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ABSTRACT 

We extended and tested the MITRE real-time embedded scalable high perfor- 
mance computing benchmarking concept by implementing the RT_2DFFT bench- 
mark on the MasPar MP-X series of massively parallel processors (MPPs). The 
RT_2DFFT benchmark specifies a symmetric two-dimensional fast Fourier transform 
(FFT) within a real-time software test bench. The test bench provides the realistic 
stimulus for the RT_2DFFT benchmark, including input/output (I/O) from/to on- 
board buffers. We developed a single RT_2DFFT implementation, heavily dependent 
on available library functions from MasPar, that can examine both benchmark 
latency specifications: latency equal to the period and latency greater than the 
period. Through the use of the MasPar RT_2DFFT benchmark implementation, we 
show that the MasPar MPPs can read a two-dimensional data set or input array 
from an I/O buffer, perform the two-dimensional FFT, and write the processed ar- 
ray out to an I/O buffer—all within the one second input array inter-arrival period 
specified in the benchmark. If latency is permitted to extend beyond one second, 
we show that it may be possible to reduce the machine size by processing sufficient 
multiple FFTs simultaneously, so that an entire row of a two-dimensional input 
array is assigned to a single processor. In this instance, the RT_2DFFT benchmark 
runs more efficiently, because communications overhead is minimized during both 
I/O and FFT processing. 
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SECTION 1 

INTRODUCTION 

Previous internal MITRE efforts have developed a benchmarking methodology 
for real-time embedded scalable high performance computing (Games, 1996). This 
benchmarking methodology has been formally documented and proposed to the 
Defense Advanced Research Projects Agency (DARPA)/Information Technology 
Office (ITO) as a means to compare performance of the various parallel process- 
ing architectures being developed within DARPA/ITO's embedded computing 
program. The central focus of this benchmarking methodology is to determine 
the level of scalable massively parallel computer performance under realistic cir- 
cumstances for a particular function. Much of the infrastructure and overhead of 
real-time processing is included in the benchmark implementations so that results 
are highly predictive of scalable massively parallel architecture performance. The 
RT_2DFFT benchmark was specified in (Games, 1996) as a test of the proposed 
methodology. We extended the MITRE real-time embedded scalable high per- 
formance computing benchmarking concept previously implemented on the Intel 
Paragon and implemented the RT_2DFFT benchmark on the MasPar MP-X series 
of massively parallel processors (MPPs). 

The Intel Paragon is an example of a multicomputer with multiple independent 
computers connected with a mesh communications architecture. Flynn's taxon- 
omy of computer architecture classifies this machine as a multiple-instruction 
stream, multiple-data stream (MIMD) architecture (Fox, 1988). In contrast, the 
MasPar MP-series is an example of an architecture that is distinctly different from 
the Intel Paragon and the MasPar MPP would be classified by the Flynn taxonomy 
as a single-instruction stream, multiple-data stream (SIMD) architecture. SIMD 
architectures have each processor execute the same instruction concurrently—with 
the option to software select any subset of the processors. 

RT_2DFFT BENCHMARK 

The RTJ2DFFT benchmark specifies a simple symmetric two-dimensional fast 
Fourier transform (FFT) within a real-time software test bench (Games, 1996). 
This benchmark is applicable to synthetic aperture radar (SAR) image formation. 
SAR is among the premier near-term signal processing applications of scalable 
computing and is an appropriate initial focus for real-time embedded bench- 



marking activities. FFTs are full-information problems where every input value 
influences all output values. FFTs are also synchronous problems that can be 
processed in a tightly coupled data parallel manner. Parallel computer algorithms 
for FFTs are well documented in the literature, with FFT algorithms often being 
used as an example problem to describe entire algorithm classes for an architecture 
(Fox, 1988; Hwang, 1984; Quinn, 1987; Stone, 1987). 

There are distinct limitations on the parallel programming paradigms that 
can be utilized with SIMD architectures (Fox, 1994). This fact is reflected in 
the limited implementation options for the RT_2DFFT benchmark on the MasPar 
MPPs. All efficient MasPar RT_2DFFT implementations must be synchronous 
and data parallel—compared to Intel Paragon RT_2DFFT implementations, which 
can include more complicated parallelization paradigms including pipelining in 
addition to data parallel paradigms. 

To account for irregularities that affect timing such as overheads associated 
with non real-time operating systems, a benchmark is typically run iteratively for 
a long duration. In a hard real-time context, worst case performance is the metric 
of interest and must be within the stated real-time requirements. 

TEST BENCH 

The software test bench is an environment within which the real-time nature of 
applications—such as the RTJ2DFFT benchmark—can be examined. The test bench 
provides the realistic stimulus for a benchmark and includes the infrastructure and 
overhead associated with a real-time implementation. This overhead includes data 
buffering and flow control. The test bench also includes the necessary software to 
collect and display performance statistics and to verify computational results. The 
test bench consists of a dedicated data source that provides data to the function 
under test and a data sink that collects the desired results. The source for an 
actual embedded system would be external and stream data into a buffer. Results 
collected at the data sink might be displayed in real-time on a graphical front- 
end workstation or on a graphical display attached to a frame-buffer. External 
input/output (I/O) is often the last frontier for massively parallel systems, so 
the initial implementation of the test bench does not attempt to interface with 
external data sources, rather internal buffers are used for the data source and data 
sink. 



Due to differences in underlying architectures, separate test bench implemen- 
tations have been developed for the Intel Paragon (Brown, 1994) and the MasPar 
MPPs. The primary differences between test bench implementations are a result 
of the hardware available to support the data source and sink on these machines. 
The MasPar test bench implementation requires a custom developed software 
architecture to maximize real-time application performance by minimizing inter- 
action with the UNIX-based front-end processor. 

HISTORY 

The RT_2DFFT benchmark has evolved from previous work that describe im- 
plementations of real-time benchmarking on the Intel Paragon (Brown, 1994; 
Brown, 1995). Initial work on a parallel implementation of a two-dimensional FFT 
benchmark for the Intel Paragon, based on a pipelining programming paradigm, is 
discussed in (Brown, 1994). The FFT implementation in that paper capitalizes on 
the capability of a MIMD architecture to run different code on each processor to 
implement a parallel algorithm as pipelined meta-problems. A second application 
benchmarked within the real-time embedded test bench on the Intel Paragon is 
a SAR benchmark application (Brown, 1995). This work is important because 
it illustrates the validity of the test bench concept as separate functions were 
developed and individually tested, and then integrated into a functional real-time 
algorithm. As long as individual functions had predictable performance, they 
could be combined into the larger SAR application with predictable results. 

Another real-time Department of Defense application using the MasPar MPP 
is the Theater Missile Defense Ground Based Radar (TMD-GBR). The MasPar 
MP-2 MPP system has been selected as the signal processor for the TMD-GBR 
system being developed by Raytheon Co., Lexington, MA., for the US Army 
Ground Based Radar Project Office in Huntsville, AL. The TMD-GBR is the 
sensor for the new Theater High Altitude Area Defense (THAAD) missile defense 
system being developed to protect friendly troops and population centers from 
tactical ballistic missiles similar to those fired by Iraq during Operation Desert 
Storm. This contract award marks the first time that commercial off-the-shelf 
(COTS) MPPs have been used in a large-scale, mission-critical, field-deployable 
system. The MasPar MP-2 was selected after rigorous competition because of its 
I/O capabilities, which provide both high bandwidth and low latency. 



SUMMARY OF RESULTS 

We developed a single RT_2DFFT implementation that extensively uses available 
library functions from MasPar and that can examine both benchmark latency 
specifications: latency equal to the period and latency greater than the period. 
Through the use of the RT_2DFFT benchmark implementation, we show that the 
MasPar MPPs can read a two-dimensional data set or input array from an I/O 
buffer, perform the two-dimensional FFT, and write the processed array out to an 
I/O buffer—all within the one second input array inter-arrival time specified in 
the benchmark—for 256 x 256, 512 x 512, and IK x IK single precision complex 
input arrays. If latency is permitted to extend beyond one second, we show that 
it may be possible to reduce the machine size by processing sufficient multiple 
FFTs simultaneously, so that an entire row of a two-dimensional input array is 
assigned to a single processor. In this instance, the RT_2DFFT benchmark runs 
more efficiently, because communications overhead is minimized during both I/O 
and FFT processing. 

The smallest machine capable of meeting the timing specification for the 
latency-equal-period case varied from IK to 8K for the MP-1 while a IK MP- 
2 was able to process each of the three input array sizes successfully. We were 
in fact unable to process a 2K x 2K input array in the required one second 
inter-arrival period on either of the MasPar machines that we used to test our 
RT_2DFFT implementation; however, we anticipate that we should be able to 
process a 2K x 2K input array on an 8K processor MP-2 within the one second 
inter-arrival time requirement. 

We identified constraints on maximum problem size for two-dimensional ap- 
plications with single precision complex data array elements—some constraints 
are due to the hardware architecture and some constraints are due to the com- 
putational capabilities. Constraints on maximum PE memory impose a potential 
limitation on input array sizes of 8K x 8K rows and columns. Furthermore, 
maximum IORAM memory constraints reduce the maximum input array size to 
4K x 4K rows and columns, and maximum I/O subsystem bandwidth constraints 
further reduce the maximum input array size to only 2K x 2K rows and columns. 

Processing-input arrays larger than 2K x 2K would not be possible on either 
the MP-1 or MP-2 even if I/O subsystem bandwidth limitations are overcome, 
assuming that we maintain the one second period requirement. We found that 
as the number of rows in the input array are doubled, the number of processors 
required to meet a constant timing requirement must increase by at least a factor of 



four. While this is not unexpected when processing two-dimensional input arrays 
for a two-dimensional FFT application, present MasPar processors are limited 
to only 16K processors and consequently growth to larger input arrays would be 
limited by the maximum size of the PE array. Given the trends apparent in the 
data, at least a 32K processor machine or a system speedup of a factor of four 
would be required to handle a 4K x 4K input array. 

It should be emphasized that all these results apply to the RT_2DFFT benchmark 
specification given in appendix A. This benchmark specification maintains a one 
second inter-arrival period independent of input array size. As such, it represents 
a substantial real-time test of the underlying hardware and system software as 
the input array size is increased. Any actual application that would require 
such two-dimeDsional FFT processing, e.g., SAR, could have a longer inter-arrival 
time and specific latency requirements. The parametric benchmarking techniques 
and infrastructure described in this report could be easily adapted to assess the 
suitability of the MasPar MP-X architecture for a particular target application 
once the actual real-time requirements are specified. 

ORGANIZATION OF THIS REPORT 

This paper is organized as follows. In section 2, we provide some general 
information on some fundamental concepts used in this paper. Material presented 
in this section expands upon the RT_2DFFT benchmark implementation guidelines 
presented in appendix A. In section 3, we describe the MasPar MP-X series 
hardware and software architecture. In section 4, we describe the software and 
hardware architectures of the MasPar test bench. In section 5, we describe 
the FFT implementation selected for the RT_2DFFT benchmark for this machine. 
We present a detailed discussion on the implementation choices and the logic 
for the selection of our RT_2DFFT benchmark software architecture. We have 
made extensive use of MasPar library routines in the implementation, and in 
appendix B, we present details on the utilization of supplied routines that move 
data within parallel data structures. 

In section 6, we discuss the practical constraints on the RT_2DFFT bench- 
mark implementation imposed by available MasPar hardware configurations. We 
present empirical performance results for the MasPar RT_2DFFT implementation 
in section 7, and we present tabular collections of empirical performance data 
in appendices C and D, respectively for the MP-1 and MP-2.   Our conclusions 



on the RTJ2DFFT benchmark results and the applicability of the MasPar MPP 
architecture for real-time applications are presented in section 8. 



SECTION 2 

FUNDAMENTAL CONCEPTS 

The MITRE benchmarking methodology for real-time embedded scalable high 
performance computing has been published as reference (Games, 1996). The 
RT_2DFFT benchmark was proposed to test the methodology and is reprinted 
in appendix A. In this section, we highlight some fundamental concepts from 
that specification that are critical to developing the RT_2DFFT benchmark for the 
MasPar MPPs. In particular, we discuss the real-time embedded processing and 
the RT_2DFFT benchmark, the difficulties with external I/O, and the manner with 
which we software-select the MasPar processor element (PE) array size. 

REAL-TIME EMBEDDED PROCESSING 

This paper examines a two-dimensional algorithm on a two-dimensional input 
array or matrix—symbolically referred to as A. In particular, we are implementing 
the RT_2DFFT benchmark, a symmetric two-dimensional fast Fourier transform. 
The objective is to find the smallest MasPar machine size that can meet bench- 
mark timing requirements for various input array sizes. The two-dimensional 
input array size is described as a function of height and width, where array sizes 
are specified by the number of rows and columns—m x n. 

For the RT_2DFFT benchmark, all input arrays are square and limited to sizes 
of powers of two. For all potential input array sizes under test, all processors will 
be utilized in our data parallel, synchronous implementation for the RT_2DFFT 
benchmark, because both MasPar machine sizes and input array sizes are powers 
of two. An input array is identified by its dimensions—a 512 x 512 input array has 
512 rows and columns. Matrices with 1024 rows and columns will be described as a 
IK x IK array, and those arrays larger than IK x IK will also be referenced using 
a similar notation—2K x 2K, 4K x 4K, etc.—where K always equals 210 = 1024. 

Let us define a problem V as performing a two-dimensional FFT on a single 
input array. If the inputs for the problem become available to the computer at 
starting time ts and the solution is completed at time tc, then the processing 
latency for problem V is (tc — ts). For the RTJ2DFFT benchmark, we are assuming 
that there is a temporal stream of problem instances V\, V2, ■ ■ ■ , Vi, ... with a 
fixed inter-arrival time r, referred to as the problem inter-arrival time or period. 



Consequently, input arrays arrive in the sequence Ai, A2, ... , Aj, ... with the 
fixed inter-arrival time T. Corresponding processed output arrays are denoted by 
Z\, Z12, ... , Z{;, ... . 

The RT_2DFFT benchmark stipulates two processing latency scenarios: 

Case 1: latency equal to the period, 

Case 2: latency greater than the period. 

For the initial RT_2DFFT benchmark, the period is specified as one second. Other 
benchmarks for actual applications may specify other inter-arrival times. Video, 
for example, has new frames of data arriving every ^th of a second, the refresh 
rate. 

The latency-equals-period case would relate to those embedded applications 
where processing must be handled as quickly as data are generated by sensors 
due to the requirement for time-critical responses. Other embedded applications 
require only that the processed output must be generated at a rate that sustains 
the real-time rate of the input. For both latency cases, processed output must be 
generated at a rate that sustains the real-time rate of the input—the time between 
successive processed outputs must be less than or equal to r. The latency-greater- 
than-period case induces a delay in the real-time output. For pipelined MIMD 
implementations of the RT_2DFFT benchmark, each problem instance yields a 
processed array (after the pipeline is filled). In contrast, for this latency case, 
our SIMD RT_2DFFT implementation collects multiple input arrays and processes 
them simultaneously. 

Using notation for problems from above, multiple problems would be aggre- 
gated and processed simultaneously in parallel. If b consecutive problems are 
blocked together for the SIMD implementation latency-greater-than-period case, 

the problem definition can be stated as [Pi, V2, ■ ■ ■ , Vb],[Vb+i, Vb+2, ■ ■ ■ , Vi-i\-, 
This can be redefined as Vi, V?, ... , Vk, • • •, where Vk represents the prob- 
lem statement for a block of input data. Using similar notation as above, 
input for this case would be blocked together for b consecutive input arrays, 
[Ai, A2, ... , A;,],[J4&+I, Ab+2, ■■■ , A2.b] ■ ■., and the output would be in the 
form [Zi, Z2, ... , Zb],[Zb+i, ^6+2, • • • , Z2.b] ■ ■ ■■ The definition of block processing 
latency here is similar to the single problem case, except it is assumed that the 
starting time ts occurs when a block of data is available for processing and the 
time tc occurs when processing is completed on a block of data.   In our SIMD 



implementation, only one block of problems can be processed at a time and so to 
maintain an input period of r, the block processing latency cannot exceed (r • b). 

Equivalently, the normalized quantity \tc~ts> will be used later to illustrate perfor- 
mance improvements for processing multiple input arrays simultaneously under 
the assumption of the second unrestricted latency case. This quantity corresponds 
to the measured period of a single problem instance. 

To ensure that processed arrays are delivered to the display device correctly, 
the processed arrays within a block must be displayed at the input rate r. Rein- 
stating the timing by pacing the output of the processed arrays during display is 
referred to as recovering clock. 

EXTERNAL I/O 

The MITRE benchmarking methodology for real-time embedded scalable high 
performance computing does not specifically address external I/O, due to the 
complexities of this problem. External I/O is often the last frontier for massively 
parallel systems, so initial implementations of the test bench do not attempt to 
interface with external data sources. Resources internal to the MPP are used 
instead for the data source and data sink. 

To illustrate these complexities, we briefly examine the networking require- 
ments to connect an external data source to an MPP. The input arrays used in this 
version of the test bench are two-dimensional, with each element being a single- 
precision complex value. Stored in binary form, each array element requires eight 
bytes or 64 bits of information. In general, networking requirements expressed in 
bits-per-second are of order 0(n2 ■ ß), where n is the input array dimension and ß 
is the input array element size expressed in bits-per-element. Networking require- 
ments are presented in Table 1 for representative input array sizes used in this 
analysis. At the input array arrival rate of only a single array-per-second, network 
throughput requirements for complex input arrays with dimensions greater than 
256 x 256 rows/columns are so large that high-performance networking capabil- 
ities beyond simple 10 megabit-per-second Ethernet networks will be required to 
handle the throughput. Networking technologies capable of supporting these data 
rates include Asynchronous Transfer Mode (ATM), Fibre Channel, and the High 
Performance Parallel Interface (HiPPI) (Koester, 1994). At video refresh rates of 
30 input arrays-per-second, the smallest input array will require high-performance 
networking technology for uncompressed arrays, while larger input arrays will re- 



Table 1.   Network Throughput Requirements for External I/O 

Input Array Size n 
Data Throughput Rates 

1 array-per-second 30 arrays-per-second 

256 4 megabits-per-second 
512 16 megabits-per-second 

1024 64 megabits-per-second 

2048 256 megabits-per-second 

120 megabits-per-second 
480 megabits-per-second 

1920 megabits-per-second 
7680 megabits-per-second 

quire networking capabilities well beyond any networking throughputs available 
today. 

FINDING THE SMALLEST MACHINE 

The real-time embedded benchmarking methodology has been developed ex- 
plicitly to consider that the high-performance computer technology under test may 
be embedded into military equipment and command and control (C2) platforms— 
where size, weight, and power consumption can be critical factors. Consequently, 
we are interested in finding the smallest machine that can sustain the processing 
requirements. It is critical that we can adjust machine size as we run the RT_2DFFT 
benchmark. 

We have been able to capitalize on supplied software from MasPar to software 
adjust the size of the PE array to run the RT_2DFFT benchmark on machines of 
various simulated sizes. Before running the RT_2DFFT benchmark, we can specify 
the PE array configuration with the mpswopt command, which permits the user 
to select any simulated machine size up to and including the maximum size of 
the actual machine. MasPar MPPs always have numbers of processors equal to 
powers of two with the smallest machine having 1024 or IK processors. MasPar 
MPPs are available with the following PEs array configurations: 

•       210 or IK processors arranged with 32 rows x 32 columns, 
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• 211 or 2K processors arranged with 32 rows x 64 columns, 

• 2    or 4K processors arranged with 64 rows x 64 columns, 

• 213 or 8K processors arranged with 64 rows x 128 columns, 

• 214 or 16K processors arranged with 128 rows x 128 columns. 

By software adjusting the PE array size, we can examine various sized MasPar 
computers, without requiring hardware reconfigurations of those machines avail- 
able to run the RT_2DFFT benchmark. Throughout this paper, all references to 
MasPar machine size will specify the number of processors with the short-hand 
notation "K"—where K always equals 210 = 1024. 
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SECTION 3 

MASPAR DESCRIPTION 

The MasPar MP-X series of MPPs combines a scalable architecture with re- 
spect to the number of processing elements, system memory, and system com- 
munications bandwidth, with a reduced instruction set computer (RlSC)-like in- 
struction set designed to leverage optimizing compiler technology, adherence to 
industry standard floating-point operations, and a suitability to very large scale in- 
tegration (VLSI) implementation (Blank, 1990; MasPar Computer Corp., 1992). 
According to Flynn's taxonomy, the MasPar MPP architecture would be described 
as single instruction stream, multiple data stream or SIMD architecture. The basic 
MasPar MPP architecture has been relatively unchanged since its introduction in 
1990. Scalability, leveraging the best computer science technologies, adherence to 
standards, and cost effective manufacturing techniques have contributed to the 
unusually long lifespan of the MasPar MP-X series MPP technology. 

MASPAR SYSTEM OVERVIEW 

The MasPar MPP system has five major subsystems that are described briefly 
below (Blank, 1990). 

UNIX Front-End (UFE): The UNIX front-end provides a standards-based 
interface to the massively parallel PE array. The UFE provides all 
user interfaces to the MPP, including slow-speed networking interfaces, 
standards-based networking software, and a UNIX-based operating sys- 
tem. 

Processor Element (PE) Array: The PE array is the massively parallel 
computation engine of the MasPar. The number of PEs can scale from 
IK (1024 = 210) to 16K (16,384 = 214) processors. 

Array Control Unit (ACU): The ACU performs two functions: 

•       The ACU controls the PE array by broadcasting all instructions to 
the massively parallel processor array. 
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• The ACU also functions as an independent processor and calculates 
all serial portions of MasPar Parallel Application Language (MPL) 
programs (MasPar Computer Corp., 1993). 

Interprocessor Communications: Key to any parallel processor is the in- 
terprocessor communications structure. The MasPar MPP has three 
interprocessor communications capabilities for the PE array: 

• A two-dimensional mesh network for communications with neigh- 

boring processors. 

• A global router network for random processor-to-processor commu- 
nications using a circuit-switched, hierarchical crossbar communi- 
cations network. This high-performance router-based communica- 
tions network can also provide high-performance links to the In- 
put/Output (I/O) subsystem, because the last stage of the network 
connects to an I/O buffer, the IORAM. 

• Two global buses: one bus for broadcasting instructions and data 
from the ACU to the PE array, and a second bus for receiving 
consolidated status responses from the PE array at the ACU. 

Input/Output (I/O) Subsystem: The I/O subsystem provides high speed 
I/O with a channel style architecture that permits overlapped computa- 
tion and communications. The MasPar architecture has been designed to 
support multiple gigabit-per-second HiPPI network interfaces and with a 
bus throughput within the I/O subsystem to support those high through- 
put rates. Input and output data are stored in a large random access 
buffer—the IORAM—that is connected to the PE array via the global 

router network. 

The MasPar MPP has two separate instruction steams (the UFE and the 
ACU), and four separate memory structures for storing user data (the UFE, 
IORAM, the ACU, and the PE array). All PE instructions are stored in the ACU, 
and are broadcast to the PEs—thus the classification as a SIMD architecture. Due 
to the separate instruction streams, two programming approaches are possible and 
supported by MasPar: 
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• When developing application codes using only MPL, the programmer 
develops one application code that is automatically distributed between 
both the UFE and the ACU, and user data is partitioned across the UFE, 
ACU, and PE array. All interprocess communications is automatically 

handled by the compiler. 

• When developing application codes for the UFE in the C programming 
language and the ACU/PE array combination in MPL, the programmer 
develops separate application codes for both locations and the program- 
mer must explicitly partition the user data across the UFE, ACU, and PE 
array. All interprocess communications between the UFE and the MPP 
back-end must be explicitly handled when developing the programs. 

Either programming approach can utilize synchronous or asynchronous inter- 
action models. The synchronous programming model utilizes only the UFE or 
the ACU/PE array combination at any instant and a Remote Procedure Call 
(RPC) convention provides a straight-forward interface between the two separate 
processes. The asynchronous model, on the other hand, utilizes a FORK/JOIN 
model to permit the UFE and the ACU/PE combination to operate concurrently. 

DESCRIPTIONS OF THE SPECIFIC MP-X MACHINES 

We tested our RT_2DFFT implementation on two different MasPar platforms: 
a 16K MP-1 at the Northeast Parallel Architectures Center (NPAC) at Syracuse 
University and a 4K MP-2 at the MasPar Corporation office in Framingham, MA. 
The primary differences in these two generations of compatible systems are the 
processor performance capabilities. While the integer performance of the processor 
has improved by greater than a factor of two and floating point performance of 
the processor has improved by greater than a factor of five, the performance 
of the communications networks has remained essentially unchanged in the new 
architecture. Table 2 illustrates the differences in peak integer and floating point 
performance for the MP-1 and MP-2. In this table, peak integer performance 
is labeled as millions of instructions per second (MIPS), and peak floating point 
performance is labeled as Mflop/s. 

Specifications of the machines used to implement the benchmark are presented 
in Table 3. In this table, we indicate the UFE machine type and its operating 
system (OS), the size of the PE array, and the available amount of each of four 
memory types.  The amount of IORAM is shown as the amount available as we 
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Table 2.   MasPar Product Family 

System Number of 
Generation Processors MIPS Mflop/s 

MP-1 IK 1,600 75 
2K 3,200 150 
4K 6,400 300 
8K 13,000 600 

16K 26,000 1,200 

MP-2 IK 4,250 400 
2K 8,500 800 
4K 17,000 1,600 
8K 34,000 3,200 

16K 68,000 6,300 

ran the RT_2DFFT benchmark; in the case of the MP-1 the total IORAM was 
larger, but system configuration limited the amount available to be used as a 
data source/sink buffer. We were able to software reconfigure each machine to a 
smaller size, so our benchmark was run on MP-1 machines of size IK to 16K and 
on MP-2 machines of sizes IK to 4K. 

We encountered another performance improvement in MasPar MPP models, 
although it is related to the date-of-manufacture rather than to the system model. 
In later machines, the UFE workstation has been upgraded. Earlier MP-ls and 
MP-2s used a DECstation 5000 workstation running ULTRIX as the operating 
system for the UFE. The UFE for later deliveries of MP-Xs has been upgraded 
to a Digital Equipment Corporation (DEC) Alpha workstation running Digital 
UNIX (formerly known as OSF/1), a variant of UNIX. The NPAC MP-1 has 
a DECstation UFE, while the MP-2 model has a DEC Alpha UFE. There is a 
significant performance improvement with the more capable Alpha processor and 
the Digital UNIX operating system. 
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Table 3.   Descriptions of the MP-1 and MP-2 Utilized in this Report 

MP-1                          MP-2 

Front-End DECstation Alpha Workstation 
FEOS Ultrix V4.3 Digital UNIX (OSF) 

PE Array 16K = 128 x 128 4K = 64 x 64 
ACU IMEM 1 Mbytes 4 Mbytes 

ACU CMEM 1 Mbytes 512 Kbytes 
PEMEM 64 Kbytes 64 Kbytes 

IORAM Size 32 Mbytes 128 Mbytes 

The MP-2 was connected to an isolated network, where often we were the sole 
user on the system. On the other hand, the MP-1 was connected to the Internet; 
so, even if our RT_2DFFT benchmark was the only process running on the ACU/PE 
array, there was the possibility that another user could execute a process on the 
UFE and potentially affect the system clock calls and increase timing variability. 
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SECTION 4 

MASPAR TEST BENCH IMPLEMENTATION 

In this section, we describe the hardware and software architectures of the 
MasPar test bench. In section 5, we examine the implementation details of the 
RT_2DFFT benchmark FFT algorithm. 

The software test bench provides the realistic stimulus for a benchmark and 
includes the infrastructure and overhead associated with a real-time implementa- 
tion. This overhead includes data buffering and flow control. The test bench also 
includes the necessary software to collect and display performance statistics and 
to verify computational results. The test bench includes a dedicated data source 
that provides data to the function under test and a data sink that collects the 
desired results. The data source and sink must be separate from the ACU and PE 
array. The source for an actual embedded system would be external and would 
stream data into a buffer. Results collected at the data sink might be displayed in 
real-time on a graphical front-end workstation or on a graphical display attached 
to a frame-buffer. 

SOFTWARE ARCHITECTURE 

The MasPar test bench implementation requires a custom developed software 
architecture, the development of which has been driven by the requirements to 
implement the data source and data sink buffers. Buffering data in the IORAM 
requires access to both the UFE and the ACU/PE array combination, which in 
turn requires that the software be written partially in C for the UFE and the 
remainder in MPL for the ACU/PE array combination. Initialization of the I/O 
subsystem is only accessible from the UFE and cannot be invoked from an MPL 
program. As a result, a specialized software architecture was required where the 
main program, written in the C programming language, on the UFE calls the real- 
time test bench as an external function. At present, a synchronous interaction 
model is utilized. If the complete I/O structure is implemented—unprocessed 
arrays coming in over the HiPPI network and processed arrays being displayed 
via the frame buffer—the asynchronous interaction model will be required as the 
UFE controls the I/O processes concurrently while the ACU/PE array processes 
the computational application. 
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With this architecture, special considerations are required to maximize real- 
time application performance by minimizing interaction with the UFE. To ensure 
optimal performance, the real-time computing tasks must execute as a contiguous 
program on the PE array, while being controlled by the ACU. Running the real- 
time processing from the ACU ensures that disruptions due to communications 
from the UFE to the ACU via the slow virtual memory expansion (VME) bus 
are eliminated. Running the real-time processing from the ACU also isolates the 
UNIX operating system on the UFE from the repetitive processing. 

The resulting test bench software architecture is presented in Figure 1. This 
figure clearly illustrates the relationship between the application specific module 
and the test bench or software test environment. The application specific module 
for the RT_2DFFT benchmark is a two-dimensional FFT. The test bench provides 
all the infrastructure within which to run the computational benchmark. The test 
bench provides software simulation of the I/O, post-processing, and verification of 
results. The test bench architecture requires that the command line parameter list 
be transferred to the control program running on the ACU so that the repetitive 
processing loop can be run from this MPL program. 

HARDWARE ARCHITECTURE 

In Figure 2, we present a diagram of the MasPar MPP that includes the 
program data flow as we run the test bench. This diagram illustrates that the 
test bench requires access to many of the subsystems within the MasPar. The 
test bench main program is run on the UFE, which distributes the command-line 
parameter list to the benchmark software running on the ACU and the PE array. 
Test input arrays can be read from disk into the UFE and can be transferred to 
the IORAM after this memory has been initialized by support functions running 
on the ACU. 

Figure 2 includes the MasPar I/O subsystems that bring in external inputs and 
display the output on an internal frame buffer (MasPar Computer Corp., 1994). 
At present, we are not required to include external I/O in the RT_2DFFT bench- 
mark; nevertheless, we include a complete hardware description of the I/O sub- 
system to illustrate that external I/O hardware is readily available for MasPar 
MPPs. To be fully operational, a real-time program must consider the flow of 
data in from an external HiPPI-connected source and out to a display connected 
to a frame buffer. In the present version of the test bench, we simulate I/O within 
the MasPar by implementing parallel data transfers between the PE array and 
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Figure 1.   MasPar Test Bench Software Architecture 

the IORAM—where the IORAM is both the data source and sink buffers. Later 
programs that fully implement data movement from the HiPPI interface to the 
IORAM or from the IORAM to the frame buffer would also utilize the IORAM to 
double buffer the data while the ACU/PE array is performing calculations on the 
data array.  Further research is required to validate the real-time characteristics 
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Figure 2.   MasPar Test Bench Hardware Architecture 

of asynchronously transferring data between the IORAM, HiPPI interface, and 

frame buffer. 

The most important data flow within the program is the highly-parallel data 
transfers between the IORAM and the PE array. These read/write operations 
occur synchronously, in parallel, with data sent to processors using software 
programmable offsets. MPL provides the capability for plural variables, where 
a plural variable is allocated space on each processor in the PE array and is 
calculated in a data parallel manner. The values of plural variables generally 
are related to the spatial nature of the PE array. Read/write offsets are plural 
variables—as a result, any parallel read/write operation can be implemented. 

A single library function call synchronously implements highly parallel data 
transfers between processors.  These transfers are the first and last steps in each 
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loop cycle within the test bench—the loop is repeated iteratively to gather timing 
statistics. Due to the synchronous nature of the SIMD PE array, it is impossible 
to double buffer this data transfer operation to hide the communications costs. 

The last significant data flow within the test bench is reserved for debug- 
ging. The MasPar has excellent libraries of support software and we used the X- 
Windows-based display software to generate pseudo-images representing memory 
state throughout the PE array (MasPar Computer Corp., 1992). Consequently, 
while developing and validating the test bench, we viewed representations of both 
input and processed data arrays to validate algorithms and I/O procedures. 
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SECTION 5 

MASPAR RT_2DFFT BENCHMARK IMPLEMENTATION 

In this section, we examine the implementation details of the FFT algorithm 
used in the RT_2DFFT benchmark. We start by describing the parallelization alter- 
natives for the MasPar SIMD architecture. Next, we discuss the FFT implemen- 
tation options for the MasPar with a detailed examination of the FFT function 
from the MasPar mathematics library. Lastly, we describe in detail the mapping 
of input data matrices to the PE array. 

PARALLELIZATION ALTERNATIVES 

The SIMD architecture of the MasPar machines limits the parallelization op- 
tions for the RT_2DFFT benchmark. Since each processing element in the PE array 
must execute the same instruction—with the option to software select a subset of 
the processors—the PE array cannot efficiently work simultaneously on more than 
a single data array unless the processing is synchronous. Consequently, we cannot 
efficiently use the PE array in a pipeline implementation, where one portion of the 
PE array processes a segment of one input array while another PE array portion 
processes a different segment of another input array. To be efficient, the RT_2DFFT 
implementation must be synchronous and data parallel with the whole PE array 
either working on a single problem instance or working on multiple problems 
simultaneously. For data-parallel, synchronous problems, the programmer must 
consider the amount and regularity of interprocessor communications and also 
ensure that the algorithm is implemented in a truly synchronous manner. 

The parallel algorithm/parallel architecture combination for an FFT on the 
MasPar massively parallel SIMD architecture leaves few options when implement- 
ing this algorithm for the two latency cases—both implementations must be syn- 
chronous, tightly coupled, and data parallel. Actually, we have been able to meet 
all requirements with a single implementation for the MasPar that is capable of 
handling all possible mappings of FFTs to the architecture, regardless of whether 
one or more two-dimensional data arrays are processed simultaneously. For the 
latency-equals-period case, all processors must be assigned the task to work on 
a single data array. On the other hand, when greater latencies are permitted, 
multiple input arrays can be processed simultaneously—providing more workload 
for an individual processor and reducing the amount of interprocessor commu- 
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nications.   Regardless of the RT_2DFFT benchmark timing requirement, efficient 
algorithms for SIMD architectures will be synchronous. 

IMPLEMENTING TWO-DIMENSIONAL FFTS 

We have implemented the RTJ2DFFT benchmark using supplied library routines 
from MasPar to perform the FFT and to manipulate data throughout the proces- 
sors. We have extensively used library software in the RT_2DFFT implementation 
because MasPar has attempted to optimize this software for their MPP architec- 
ture. We have examined two versions of two-dimensional FFT library software 
for the RT_2DFFT implementation: 

1. The MasPar image processing library (MPIPL) 
(MasPar Computer Corp., 1992), 

2. The MasPar mathematics library (MPML) 
(MasPar Computer Corp., 1992). 

The image processing library has all data matrices arrayed in a form called a two- 
dimensional hierarchical mapping, where the data is arranged onto the processors 
as if both the data and processors are in a two-dimensional array. Each processor 
gets a localized rectangular sub-array of data. As a result, this FFT algorithm 
can only be used for a single matrix to PE array mapping. On the other hand, 
the MPML FFT routines have a more complicated mapping of data to the PE 
array; however, this FFT function is more extensible and permits more options. 

Previous research on MIMD architectures (Brown, 1994) has shown that when 
there is adequate memory, the most efficient parallel two-dimensional FFT algo- 
rithm occurs when all data in a row is placed on a single processor and the 
two-dimensional FFT algorithm is implemented by: 

1. performing a one-dimensional FFT without any communications, 

2. performing a matrix transpose or corner-turn, 

3. performing a second one-dimensional FFT, again without any communi- 

cations. 

With the MPIPL FFT functions, this algorithm scenario was impossible. 
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Benchmarks from MasPar confirmed that the combination of performing a 
pair of one-dimensional FFTs separated by a corner-turn or matrix transpose 
is the most efficient two-dimensional FFT implementation (Pickard, 1995). Due 
to its flexibility and potential for better performance, we have selected an FFT 
routine from the mathematics library. The MPML FFT routines are sufficiently 
extensible that we have been able to develop a single RT_2DFFT implementation 
that can handle both: 

Case 1: A single input array mapped to all processors, 

Case 2: Multiple input arrays mapped to the processors and 
processed simultaneously. 

These cases correspond to the two latency scenarios in the RT_2DFFT benchmark 
specification (see section 2). By using the mathematics library FFT routines and 
other routines that efficiently rearrange data on the PEs, a single RTJ2DFFT im- 
plementation can process both latency requirements of the RT_2DFFT benchmark. 

When the entire PE array collaborates on processing a single input matrix, 
then the RT_2DFFT benchmark specifies that we select the smallest sized machine 
where the latency to process an input array is equal to the period. When we ex- 
amine more than one input array simultaneously, the latency will be greater than 
the period. In fact, the only reason to examine the latency-greater-than-period 
case, is to be able to perform the processing more efficiently, and consequently, 
reduce the machine size. 

MPML FFT IMPLEMENTATION OPTIONS 

To research both latency requirements, we have included software in the 
RT_2DFFT implementation that examines all possible numbers of input arrays that 
can be processed simultaneously given the PE array size and memory constraints 
of available MasPar MPPs. The RTJ2DFFT implementation assumes that all input 
array sizes and numbers of input arrays are powers of two, so that there are always 
perfect mappings from the input data to the PE array size. We have examined 
several possible mappings of input data to the processing elements for the FFT 
library routines. Our discussion will concentrate on three specific mappings: 

1.      A single input array spread over the entire PE array, 
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2. A single input array row per PE, 

3. Multiple input array rows per PE, or multiple tiers of data. 

The three mappings are graphically illustrated in Figure 3. In some instances, to 
utilize the available PE memory, it may be required to replicate the input array 
rows on an individual processor. This will be performed by generating multiple 
tiers where a single row is mapped per processor. Each tier may have multiple 

input arrays, and each tier of arrays is processed iteratively. 

For the MPML FFT routines, the PE array is considered a one-dimensional 
linear array rather than a two-dimensional mesh. A single function call performs 
the parallel FFTs for any number of tiers, regardless of the mappings, as long the 
data is loaded into memory in the proper locations on the appropriate processors. 

The first mapping is required for the latency-equals-period case when the 
number of processors is greater than the number of rows. For those instances 
where the number of processors equals the number of rows in a single matrix, 
then the second mapping—with P = n—would be used for the latency-equals- 
period case. In section 6, we discuss the limitations that the PE array size and 
the amount of memory have on these data/processor mappings. 

For the latency-greater-than-period case, we can exploit the additional available 
parallelism and take full advantage of the available memory on the PE array 
and perform multiple FFTs concurrently. As we process multiple input arrays 
concurrently, there are three situations of interest. The first situation occurs 
when even with multiple input arrays, individual data rows must be spread over 
multiple processors; the second situation occurs when there are adequate data 
that entire rows are assigned to an individual processor; and the third situation 
occurs when there are sufficient data that multiple input array rows are assigned to 
individual PEs—arranged in multiple tiers. The first of these situations would be 
an extension of the first mapping in Figure 3—with multiple input arrays spread 
across the PE array and requiring multiple processors per row. When there is at 
least an entire input array row on a processor, communications when performing 
the one-dimensional FFTs are minimized and performance should be maximized. 
We illustrate this point in section 7 with empirical data. 
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Figure 3.   Mapping One or More Input Arrays onto the PE Array 

MAPPING INPUT DATA TO THE PE ARRAY 

We are assuming that the input data are available in the source buffer in 
raster-scan format, that is, in row-major format. We think of a two-dimensional 
input array as being in a rectangular form; however, our data is actually one long 
stream that will have end-of-row breaks imposed simply by the matrix width. 
Figure 4 illustrates a single input array and how the two-dimensional nature of 
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Figure 4.   Conceptual Two-Dimensional Input Array 

the data is actually a single data stream. Input data is stored in a single source 
buffer (IORAM), with row delimiters calculated from matrix size. When we are 
processing more than one input array at a time, they are simply arranged in 
consecutive order, and data location information is calculated as a function of 
input array size and identifier. Figure 5 illustrates multiple input arrays and the 
manner with which they are handled as a single data stream. 

The library FFT routines specify that when more than one processor is re- 
quired per input array row, the data will be mapped to the PE array in a manner 
referred to as cut-and-stack. In a cut-and-stack data/processor mapping, data 
within an individual row are assigned to the processors in a round robin man- 
ner with adjacent matrix elements being assigned to adjacent processors, then 
wrapped back to the first processor assigned to the matrix row. Cut-and-stack 
for multiple processors assigned to a single data row is illustrated graphically in 
Figure 6. The cut-dimension equals the number of processors assigned to a single 
row. Assigning an entire input array row to a processor is a degenerate form of 
cut-and-stack, where the cut-dimension is equal to one. Cut-and-stack for a single 
processor assigned to a single input array row is illustrated graphically in Figure 7. 
This figure also depicts the manner in which multiple input arrays are mapped to 
processors. 
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Figure 5.   Multiple Two-Dimensional Input Arrays 

The cut-and-stack data mapping for multiple processors per data row is, un- 
fortunately, the worst mapping to implement directly when moving data originally 
in row-major order to the PE array. Only single matrix elements can be read at 
a time, albeit in parallel, to the PE array—a loop must be used to repeated read 
single values in parallel until all data is transferred to each processor in the PE 
array. The parallel data reads from IORAM use the router-based network and 
communications on this media incur communications overhead that is a linear 
combination of a fixed start-up latency and a message transfer cost proportional 
to message size. Consequently, multiple parallel data reads from IORAM incur 
multiple instances of fixed communications latency, inflating the overall commu- 
nications costs to move source data from the IORAM to the PE array and to 
move the processed data from the PE array back to the IORAM. When there are 
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Figure 6.   Cut-and-Stack for Multiple Processors per Data Row 

adequate data that an entire row is mapped to a single processor, the degenerate 
cut-and-stack permits the data to be read in a single parallel operation. 

To minimize communication costs, we developed a two step process to read 
and write data in parallel from and to IORAM. This technique reads a section 
of an input array row to a processor and then redistributes the row data to the 
processors in the appropriate cut-and-stack format. We save communications time 
by limiting the number of parallel input data read/writes, and we replace these 
operations with a call to a MasPar library routine that shißs the data to the proper 
storage positions on the correct processors. Figure 8 illustrates the read/shift 
procedure for a parallel read operation. This technique minimizes the number of 
read/write messages involving the IORAM and performs the data distribution in 
a manner that has been optimized for the MasPar architecture. Details on the 
implementation of the shift functions are provided in appendix B. 
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SECTION 6 

MASPAR MPP ARCHITECTURE CONSTRAINTS 

In this section, we examine performance constraints imposed by the MasPar 
MPP architecture on the RT_2DFFT benchmark implementation and on real-time 
performance in general. Performance of our RT_2DFFT implementation is highly 
dependent upon the MasPar MPP processor type and the available hardware 
resources: in particular, the amount of memory and the available bandwidth in 
the sequential I/O subsystem bus. The quantity of available memory in each of 
three separate memory subsystems affects performance—in particular, the amount 
of PE memory, the amount of IORAM, and the amount of ACU memory. Con- 
straints imposed by each memory quantity are discussed below for both maximum 
hardware configurations and the actual configurations used to test the RT_2DFFT 
implementation. In addition, we discuss the real-time processing constraints on 
possible input array sizes imposed by the available bandwidth in the sequential 

I/O subsystem bus. 

PROCESSOR TYPE 

The processor type (MP-1 or MP-2), number of processors, and the amount 
of memory in the PE array directly affect the performance of the MasPar compu- 
tational engine and the performance of our RT_2DFFT benchmark implementation. 
For a given processor type, the number of PEs determines the amount of compu- 
tational power (in Mflop/s) that the machine can deliver. Those capabilities were 
summarized in Table 2. Theoretically, an MP-2 can perform five times the number 
of floating point operations per unit time as the MP-1. As a result, a smaller MP-2 
may be applicable for a RT_2DFFT benchmark requirement than an MP-1. Also 
an MP-2 may be able to process larger input arrays in the specified input array 
inter-arrival time than an MP-1. Empirical results, presented in section 7, support 

these conclusions. 

MEMORY 

Regardless of the processing period specified in the RT_2DFFT benchmark, there 
are some theoretical constraints imposed on the size of input arrays that can be 
processed on a MasPar MPP due to maximum amounts of available memory. 
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The analysis in this section assumes that an entire input array must be loaded 
into PE array memory at the same time to perform the RT_2DFFT benchmark. 
Any out-of-memory technique would not be feasible for real-time applications. In 
particular, the amount of PE array memory and the amount of IORAM memory 
affect input array size and number of arrays that can be processed concurrently. 
The amount of ACU memory affects the duration of the benchmark runs. 

PE Array Memory 

The amount of PE array memory is a function of the PE array size and the 
amount of memory per processor, denoted by M. Since there are P PEs, the total 
memory in the PE array is (P ■ M) bytes. There must be enough memory not only 
to store the input array, but also to store the auxiliary plural variables required 
for the calculation. Assuming that we have single-precision complex input arrays, 
each array element is represented by eight bytes, and an n x n input array requires 
(8 ■ n2) bytes. In addition, at least double this amount of memory is required for 
auxiliary work space. Thus we need (24 • n2) < (P ■ M). This relationship can be 
used to determine the largest input arrays that can be processed as a function of 
the PE array size and the amount of memory per processor. 

Table 4 presents the largest input array that can be processed as a function 
of M and P. Both the NPAC MP-1 and the MasPar Corporation MP-2 used 
for benchmark trials had 64 Kbytes of available memory on each PE—the corre- 
sponding row in Table 4 is highlighted by the arrow. In particular, this table shows 
that due to memory constraints, our RT_2DFFT implementation could examine no 
input array of size greater than 4K x 4K. To examine 8K x 8K input arrays with 
our RT_2DFFT benchmark implementation, a MasPar MPP with more memory 
per processor would be required. It is important to note that due to memory 
constraints, no single-precision complex input arrays larger than 8K x 8K can be 
processed on either the MasPar MP-1 or MP-2. 

IORAM Memory 

The next memory constraint affecting performance is the amount of available 
IORAM, the serial memory in the I/O subsystem used as the input array source 
and output array sink. The IORAM must be sufficiently large that it can support 
both data source and data sink functions. Thus the IORAM must have at least 
(2 • 8 • n2) bytes of memory—for n = 2K, this corresponds to 64 Mbytes of storage. 
Four times this amount, or 256 Mbytes, are required when n = 4K. Double 
buffering requirements for actual processing would double these amounts. MasPar 
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Table 4.   Maximum Input Array Size as a Function of MasPar MPP 
Configuration 

P 
M IK 2K 4K 8K 16K 

16K 512 IK IK 2K 2K 
^64K IK 2K 2K 4K 4K 
256K 2K 4K 4K 8K 8K 

MPPs can be purchased with up to 1024 megabytes of IORAM (a gigabyte), 
thus conceptually IORAM limitations would limit the potential maximum single- 
precision complex input array size to 4K x 4K. Actual IORAM constraints on 
available machines constrained our RT_2DFFT implementation to 2K x 2K input 
arrays. This was achievable only by carefully managing the IORAM memory and 
re-using the same buffer space in IORAM for both the input source and the output 

sink and saving the input array in PE memory. 

This reuse is achieved by first copying the source input array into PE array 
memory before any timing information is collected. After we begin the benchmark 
process, the initial time stamp is calculated, the input array is read in from the 
data source, and the FFT is calculated. However, instead of writing the processed 
array to the shared buffer, the stored input array is written out to the buffer. 
Subsequent iterations of the benchmark repeat this cycle. After the RTJ2DFFT 
benchmark has completed and all timing information has been gathered, the last 
processed array is sent to the data sink buffer for verification processing. 

ACU Memory 

The last memory-based implementation constraint we encountered is a result 
of the amount of serial memory available in the ACU. This problem is a side- 
effect of the RT_2DFFT benchmark; in particular, timing information is stored on 
the ACU when running the RT_2DFFT implementation to remove the impact of 
accessing the UFE OS during a benchmarking trial. However, due to constrained 
amounts of ACU memory on the available MasPar machines, some of the longer 
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benchmark runs—15 minutes in length as specified by the RT_2DFFT benchmark— 
were impossible. This limitation is only a factor when the time to process an 
input array is significantly less than a second. 

I/O SUBSYSTEM BANDWIDTH 

In addition to the RT_2DFFT implementation constraints imposed by finite 
memory resources, another constraint on maximum data throughput exists: the 
finite bandwidth of the bus within the I/O subsystem. Even though this bus 
has the massive bandwidth of 230 Mbytes/s (megabytes-per-second), it can be a 
sequential bottleneck. Due to bandwidth limitations, it is impossible to simul- 
taneously load 4K x 4K unprocessed input arrays from an external source and 
send the processed data to the frame buffer for display if the data arrives at a 
rate of only one array-per-second. The bandwidth required to transfer 4K x 4K 
single-precision complex input arrays into and out of IORAM at a rate of only 
one array-per-second would be 256 megabytes-per-second (2 • (8bytes ■ (4K • 4K))). 

During our experimentation with the MasPar RT_2DFFT implementation, we 
never encountered this problem because the RT_2DFFT benchmark explicitly does 
not require that external I/O be considered at this step. Theoretically, we could 
configure the IORAM with sufficient memory to support 4K x 4K input ar- 
rays; however, unless the bus bandwidth is significantly increased it would not be 
possible to move data to and from IORAM. Consequently, the finite bandwidth 
sequential I/O channel bus is an inherent limitation that will effect the extensi- 
bility of the present overall MasPar architecture to real-time processing of large 
matrices. 

CONCLUSION 

In this section, we described various constraints attributable to the MasPar 
MPP architecture for two-dimensional applications with single precision complex 
data array elements. Constraints on maximum PE memory impose a potential 
limitation on input array sizes to 8K x 8K rows and columns. Furthermore, 
maximum IORAM memory constraints reduce the maximum input array size to 
4K x 4K rows and columns, and maximum I/O subsystem bandwidth constraints 
further reduce the maximum input array size to only 2K x 2K rows and columns. 
These constraint numbers assume that the problem output is as large as the 
problem input array, as specified in the RT_2DFFT benchmark.   The maximum 
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input array size of 2K x 2K falls significantly short of the 16K x 16K maximum 
input array size stated in the RTJ2DFFT benchmark specification. However, in 
many applications, entire two-dimensional arrays are read in and processed, but 
only minimal information, e.g., detections, are output. For applications that do 
not produce output streams with as much data as the input stream, the size of the 
problem that could be considered with current systems would effectively double. 
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SECTION 7 

MASPAR PERFORMANCE RESULTS FOR THE RT_2DFFT 
BENCHMARK 

In this section, we describe the real-time performance of our RT_2DFFT bench- 
mark implementation. We have exercised the MasPar RTJ2DFFT implementation 
for a variety of input array sizes, machine sizes, and the latency cases—all con- 
figuration values are specified in the RT_2DFFT benchmark. The hardware config- 
urations for both the NPAC MP-1 machine and the MasPar Corporation MP-2 
machine on which we collected the data are described above in section 3. 

The RT_2DFFT benchmark specification requires that basic clock functions 
be examined to form a baseline with which to measure real-time performance. 
Properties of the clock and the methods employed to time our performance runs 
are described in the first subsection. After the timing subsection, there are 
five subsections that evaluate the empirical data collected when exercising our 
implementation. We first compare two techniques for moving the input data from 
the data source to PE array memory and the processed data from the processor 
memory to the data sink. We present empirical data to illustrate the tradeoffs 
between performing I/O directly with the IORAM and by performing the I/O in 
a more convenient manner but shifting the data to the proper PE array memory 
locations. In the next subsection, we examine empirical data collected during 
extended RT_2DFFT implementation tests with durations as long as 15 minutes. 
Empirical performance data collected during these extended runs permit the 
assessment of any effect that the UFE OS may have on the real-time performance 
of our implementation. We have found that real-time performance is predictable 
with the most variance in empirical timing data due to the side effects imposed 
by calling the clock. 

Because of the predictable near absence of variation observed when running the 
MasPar RT_2DFFT benchmark implementation, the last three subsections focus on 
a parametric analysis based on a set of shorter runs, typically consisting of only 
ten iterations. In these subsections, we only present a summary of the data; 
an extensive listing of the empirical data is tabulated in appendices C and D 
for the MP-1 and MP-2 respectively. We first describe the empirical results for 
processing a single input array at a time—relevant to the latency-equals-period 
case in the RT_2DFFT benchmark specification. We next describe empirical results 
for processed multiple input arrays concurrently—relevant to the latency-greater- 
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than-period case. In the final subsection, we examine scalability of a real-time, 
embedded system. We first identify the smallest machine—for both MP-1 and 
MP-2—that is required to meet the RTJ2DFFT benchmark specification of a one- 
second input array inter-arrival time or maximum output period for various input 
array sizes. Then we examine sustained processor utilization as a function of input 

array size and machine size. 

TIMING MEASUREMENTS ON THE MASPAR MPP 

Access to a clock in our RT_2DFFT benchmark implementation used MpTimer 
routines that measure elapsed time using the clock capabilities in the UFE. The 
RT_2DFFT benchmark specifies that wall clock time be used in the implementation. 
The MasPar clock function meets this requirement—it continues to run even 
when the implementation, running on the ACU and PE array, is swapped out 
or otherwise interrupted. 

. We were unable to use a high resolution timer on the ACU because of un- 
specified implementation problems with the function calls. It would have been 
desirable to have had a timer located on the ACU and PE array to eliminate 
any interaction with the UFE. It would also have been desirable to have a higher 
resolution clock than was available for use. 

To test timing variability, we ran the repeated clock benchmark as described 
in (Brown, 1994). The clock benchmark repeatedly calls the elapsed timing rou- 
tine in a tight loop and stores the elapsed times between calls. Differences between 
successive times, called deltas, can be analyzed during post processing to measure 
clock variability. The measured deltas can be used to examine the clock resolution 
of the timing functions. When the elapsed times between clock calls is less than 
the clock resolution, the data will be reported as either zeros or the minimum 
clock resolution. Clock resolution depends on the UFE type and its OS. For the 
MP-1, we were limited to a resolution of about 4 milliseconds; on the MP-2 the 
resolution was about a 1 millisecond. The actual time to perform the function 
call to obtain elapsed time varied, often greatly. We suspect that a clock call is 
highly dependent on UFE activity. 

Effects due to the UFE can be inferred from the number of clock calls made 
within the clock resolution and from the size of measured deltas. For example, 
on the MP-1 UFE, we found the number of clock calls that could be completed 
within the clock resolution—about 4 milliseconds—varied from 18 to 60 calls. The 

42 



distribution of the calls was trimodal with peaks at about 20, 40, and 60 calls. 
The worst case, when only 20 calls were completed in 4 milliseconds, indicates 
that about 200 microseconds are needed for the clock call. Although we did not 
run the clock benchmark on the UFE of the MP-2, we did run it on a DEC 
Alpha Workstation with the same OS. We found that the number of calls within 
the one-millisecond clock resolution varied between 243 and 287 with distribution 
peaks at 274 and 286. 

Besides the variability of the clock call time, there is also variability indicated 
by deltas being larger than the resolution. These large deltas are due to process 
activity on the UFE—the clock call must wait until the OS can process it. OS 
activity can be a result of other users being processed by the OS; however, there 
are also many system daemons that the OS must service periodically. In one clock 
benchmark on the MP-1, we noticed a delta of 100 milliseconds. This large delta 
indicates the difficulty in measuring real-time performance using a non-real-time 
OS. Timing using the test bench should not induce side-effects that are more 
significant than the predictability we are attempting to measure. We attempted 
to minimize side-effects by being sole user on the MasPar UFEs as we ran our 
RT_2DFFT implementation. 

The differences that we have noted between machine types are only one of scale. 
The same problem exists on either UFE machine type—OS activity—ignoring the 
interference of other user processes. 

The RT_2DFFT benchmark implementation processing loop consists of the fol- 
lowing operations: 

1. Read data from the IORAM to the PE array, 

2. Compute ID FFTs on the rows, 

3. Perform a corner turn on every data array, 

4. Compute ID FFTs on the columns, 

5. Write the data from the PE array to the IORAM. 

We implemented two types of clock insertions; they are illustrated in the two 
diagrams in Figure 9. Each diagram shows the processing operations in the 
loop. The top diagram shows that block timing has clock insertions between each 
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Figure 9.   Timing Insertion Options 

operation to time each separately; this requires five separate calls to the system 
clock. The bottom diagram in Figure 9 shows that global timing has only one 
clock insertion in the complete processing chain, only one call to the system clock 
is made during each loop iteration. The clock insertion method is specified at run 
time. Except for the time required to perform the additional four clock calls, we 
expect that the sum of times for the individual operations in block timing should 
be similar to global timing. Timing variability for block timing will be greater 
than timing variability for global timing because of each of the multiple timing 
calls contributes to an aggregate variability. 

Since a single clock on the UFE was used, there was no requirement for 
synchronizing clocks at the processors or at the data source and data sink. A single 
clock insertion was placed at each of the locations within the code as indicated in 

Figure 9. 
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PARALLEL INPUT COMPARISON 

We examined two parallel I/O implementations: one that reads input array 
data directly to processors in the required cut-and-stack data mapping, and an- 
other that reads the input array data in a more efficient manner by portions of 
rows but then requires data communications to shift the data into the required 
cut-and-stack data mapping. Empirical data shows that, in all situations of in- 
terest, the read/shift operation for parallel data array I/O from/to the IORAM is 
more efficient than cut-and-stack I/O operations. We present data in Table 5 to 
illustrate the improved performance of the read/shift operation compared to the 
cut-and-stack for multiple processors per data array row. Table 5 presents data 
for comparing the time to perform: 

1. One parallel input array read from IORAM, 

2. One parallel output array write to IORAM, 

3. One loop combining the I/O and the two-dimensional FFT. 

The results are for 512 x 512 input arrays and for IK to 16K processors. The 
timing data are for distributing a single input array over all processors. The data 
were collected in short duration benchmarking runs performed on the MP-1. The 
system configuration for this machine is presented in section 3. 

In all PE array size combinations reported in Table 5, read/shift is better than 
cut-and-stack. The results are representative of all input array sizes examined in 
this analysis; however, other experiments did show that cut-and-stack is superior 
for small input arrays (256 x 256) on 8K and 16K processor machines. In these 
cases, the time to process the single input array is significantly less than the time 
required to perform the operation as specified by the RT_2DFFT benchmark, so a 
smaller machine would be used. 

We conclude that for parallel I/O, it is better to read from the IORAM in 
the fastest way possible using parallel strides, and then to add the interprocessor 
communication step to rearrange the data to the correct data mapping. This 
shift operation is similar to the corner turn that we use between individual one- 
dimensional FFTs as we perform a two-dimensional FFT. Appendix B contains a 
more detailed discussion of how these rearrangements are implemented. 
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Table 5.   Comparison of Row/Shift versus Cut-and-Stack Data Array 
I/O—512 x 512 Array 

Times in milliseconds 
p I/O Algorithm Read Write Loop 

IK read/shift 312 258 1094 
cut-and-stack 469 426 1414 

2K read/shift 163 137 593 
cut-and-stack 243 226 755 

4K read/shift 78 67 302 
cut-and-stack 125 106 382 

8K read/shift 27 25 134 
cut-and-stack 63 55 200 

16K read/shift 19 20 86 
cut-and-stack 20 20 82 

EXTENDED-DURATION TESTS 

One main requirement in the RT_2DFFT benchmark specification is that the 
implementation should be run for 15 minutes. Given the requirement for a one- 
second maximum output period, we are examining at least 900 iterations that 
should give an adequately large sample to fully understand real-time performance 
predictability. Besides confirming that period requirements can be met, the 
extended-run time also allows us to assess what effect, if any, the operating 
system has on the real-time performance. Such an effect would manifest itself as 
some processing times being significantly larger than the rest. We use maximum 
latency and maximum output period as the metrics to describe performance in 
a benchmark run to ensure predictable real-time performance. During a run, 
timing information is stored on the MasPar ACU using either block or global 

46 



timing as described above. The initial iteration of the processing loop is ignored. 

All analysis is performed in post processing. 

To ensure that there are no drastic timing effects due to our benchmark 
implementation being interrupted and swapped-out, we only collected timing data 
when we were the sole process running on the ACU and PE array. The extended 
runs that we show are all based on processing a single input array at a time, so they 
are relevant to the latency-equals-period case. Similar extended run results for 
multiple input arrays have been analyzed, but they are not presented here, because 
like the single input array cases, they did not show anything that demonstrates a 
significant disruption to real-time performance. 

We first present the empirical data for a 15 minute run on the MP-1 in 

Figure 10. This figure contains three graphs: 

1. A time plot for the 15 minute run, 

2. A histogram for block timing, 

3. A histogram for global timing. 

The top graph in Figure 10 shows a typical 15-minute RTJ2DFFT implementation 
run on an MP-1 configured as a IK machine. A single 512 x 512 input array was 
processed by the entire PE array. The data in this graph were generated using 
block timing and the graph displays the accumulated time for each operation in 
the processing loop. Thus the top curve (labeled "IORAM Write") marks the 
total time to process a single loop iteration. The x-coordinate indicates the time 
in seconds when the processing of the input array started. This graph shows the 
relative time spent between I/O and FFT processing; slightly more than half of 
the time is spent moving data from the data source to the PE array and from 
the PE array to the data sink. Notice that the total time required is consistently 
around 1100 milliseconds; in particular, this run shows that a IK MP-1 cannot 
meet the target maximum output period specification of one-second. 

The thickness of the curves in the top graph of Figure 10, which is a plotting 
artifact due to the size and closeness of the characters used to represent the 
data points, makes it difficult to examine variability during the 15 minute run. 
The bottom portion of Figure 10 shows two histograms that are better suited to 
examine processing variability. On the left we present a histogram derived from 
block timing, in particular, for the times corresponding to the "IORAM Write" 
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Figure 10.   Processing a Single 512 x 512 Input Array on a IK MasPar MP-1 

curve. There is approximately a 40 millisecond range in the histogram. This 
range is about 4% of the total time for processing the entire loop (about 1100 
milliseconds). 

Since the times for the left histogram in Figure 10 are based on summing the 
timings for the five operations—requiring five separate calls to the clock—we were 
concerned that the variability was influenced by the additional clock calls. We 
reran the 15 minute test using global timing and present a histogram for this 
timing option on the right in the figure. The range has dropped to only about 15 
milliseconds, which results in a more peaked histogram. The arithmetic mean time 
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has shifted lower by about 20 milliseconds. These changes can be explained by 
the reduced number of clock calls. The results are consistent with timing behavior 
observed in the clock benchmarks run on the MP-1 UFE (discussed above). 

In Figure 11, we present empirical performance graphs for the MP-2 machine. 
The presentation is similar to Figure 10, except that we include only a single 
histogram for block timing data. We again process a single 512 x 512 input array 
with the machine configured with a IK PE array. The top graph in Figure 10 
shows the accumulated block times for a single loop to process the input array. 
The run duration was only six minutes, due to ACU memory limitations for storing 
the timing arrays. The timing curves in Figure 11 illustrate less variability than 
those in Figure 10. We present a histogram—based on block timing—in the 
bottom portion of Figure 11 to examine this variability. The range of data in the 
histogram is only six milliseconds, which is about 1.5% of the total time. The 
reduced variability for the MP-2 run is most likely due to the clock, which has 
both better resolution and a faster call time for the Alpha workstation-based UFE. 

Although not presented here, we have examined graphs similar to those in 
Figures 10 and 11 for both machine types and various input array sizes, various 
machine sizes, and various numbers of simultaneously processed input arrays. 
Almost all of the extended runs for both the MP-1 and MP-2 showed the same 
minimum amount of variability that we have observed in these figures. The few 
exceptions were most probably due to the presence of other users on the UFE or 
to operator interference. 

LATENCY-EQUALS-PERIOD CASE 

This section describes empirical results for processing each input array as it 
arrives—corresponding to the case where the latency must equal the period. Be- 
cause of the extremely small amount of run-time variability that we observed above 
for the extended duration tests, this in-depth parametric performance analysis has 
been based on data obtained in shorter duration tests of the MasPar RTJ2DFFT 
implementation. We collected statistics for runs of only ten iterations of the 
processing loop after ignoring the initial iteration. All runs have been duplicated 
for both block and global timing. Note that the total time for the run will vary 
from the sum of the pieces, since they are based on separate timing insertions and 
separate runs. A complete listing of the empirical performance data is presented 
in appendix C for the MP-1 and in appendix D for the MP-2. 
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Figure 11.   Processing a Single 512 x 512 Input Array on a IK MasPar MP-2 

In Table 6, we present the maximum processing period for a single input array 
using global timing for all available machine sizes and for four different input 
array sizes, 256 x 256, 512 x 512, IK x IK, and 2K x 2K. As we examine 
real-time performance, we are interested in examining variability. The maximum 
processing period represents the worst-case situation, and is an estimate of the 
time required for the operation to be processed and maintain the predictability 
required of a real-time system. An "—" indicates that a timing value is not 
available for those parameters. The current version of the RT_2DFFT benchmark 
implementation cannot process a 2K x 2K input array on a IK machine—we have 
not implemented a two-dimensional FFT algorithm where there are multiple rows 
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Table 6.   Maximum Times in Milliseconds for Latency Equals Period 

MP-1 MP-2 
n IK 2K 4K 8K 16K IK 2K 4K 

256 282 126 54 51 40 119 67 31 
512 1094 593 302 134 86 427 249 131 
IK 3359 2341 1411 684 313 910 964 525 
2K — 7539 5641 2969 1500 — 2202 2079 

Table 7.   Sustained Processing Rate in Mflops/s for Latency Equals 
Period 

MP-1 MP-2 
n IK 2K 4K 8K 16K IK 2K 4K 

256 18.6 41.6 97.1 102.8 131.1 44.1 78.3 169.1 
512 21.6 39.8 78.1 176.1 274.3 55.3 94.8 180.1 
IK 31.2 44.8 74.3 153.3 335.0 115.2 108.8 199.7 
2K — 61.2 81.8 155.4 307.6 — 209.5 221.9 

from the same input array being assigned to a single processor. We have not been 
concerned with this implementation scenario because there is not enough PE array 
memory on the available machines to run this case. The empirical timing data 
in Table 6 has been used to generate Table 7, in which we present the sustained 
processing rate in Mflops/s for the latency-equals-period case. The calculation of 
Mflop/s uses 10n2 log2 n for the number of operations. 

The times in Table 6 indicate how the period scales with respect to input array 
size and machine size. Similar scalings are apparent in Table 7 in the Mflops/s 
rate. The times for the MP-1 decrease and the Mflops/s increase as the machine 
size increases—as expected—but sometimes in a super-linear manner (consider 
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256 x 256 input arrays). This speed-up could be an artifact of the software- 
based technique to reconfigure the machines to simulate smaller machines. The 
times and Mflops/s rate for the MP-2 show an almost linear speed-up with 
respect to machine size, except for the IK x IK input array on the IK and 2K 
machines. In this case, the processing time actually worsens when the machine 
size is increased. This is caused by the relationship between computation and 
communication capabilities on the MP-2. This machine has faster processors but 
the same communication routers and networks as the MP-1. When expanding 

the machine size from a IK to a 2K PE array for a IK x IK input array, we 
spread a row of data over two PEs rather than just one. Additional interprocessor 
communications are required, which results in an increase in communications time 
that evidently is greater than the decrease in computation time due to the added 
parallelism. 

Scaling is approximately linear with respect to the size of the input array, n2. 
That is, if n doubles, we expect about a factor of four increase in the processing 
time. The data in Table 6 scale in this manner, except in the situation when a 
row is mapped to a single PE on the MP-2. For example, the time only roughly 
doubles when going from a 512 to a IK input array on a IK MP-2. The reason for 
this anomaly lies again in the reduced internal communications that occur when 
an entire input array row is mapped to a PE. 

If we compare comparable parameter values for the MP-1 and MP-2 in Tables 6 
or 7, there generally is a speed increase of a factor of 2-3 for an MP-2 versus an 
MP-1. However, MasPar advertises that there is a 5 fold increase in peak floating 
point processing rate for an MP-2 compared to an MP-1 (see Table 2). We are 
not able to obtain this increase in performance with the RT_2DFFT benchmark 
implementation, because the MP-2 communications capabilities have not been 
improved. 

For the performance of any parallel application implementation to scale with 
processor improvements in a new architecture, the communications capabilities 
must improve as much as the processor performance. Formulas are provided in 
(Koester, 1995) that quantify this relationship, and they can be used to esti- 
mate performance if communications and calculations capabilities do not increase 
equally. 
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LATENCY-GREATER-THAN-PERIOD CASE 

This section describes empirical results for processing multiple input arrays 
simultaneously—corresponding to the case where the latency can be greater than 
the period. As in the previous subsection, our results are based on short runs 
that are typically ten replications of the processing loop after ignoring the initial 
iteration. All runs have been duplicated for both block and global timing. A 
complete listing of the empirical performance data is presented in appendix C for 
the MP-1 and in appendix D for the MP-2. 

If latency is permitted to be greater than the period, we show that it may be 
possible to reduce the machine size by processing multiple FFTs simultaneously. 
In particular, if an entire row of a two-dimensional input array is assigned to a 
single processor, we will show that the RT_2DFFT benchmark runs more efficiently, 
because communications overhead is minimized during both I/O and FFT process- 
ing. In this analysis, we are interested in total time to process the block of input 
arrays divided by the number of input arrays being processed simultaneously. This 
normalized single problem processing time must be less than or equal to the one 
second period specification. This notion of maximum output period will be used 
extensively as the metric to evaluate RT_2DFFT implementation performance for 
this latency case. 

The RT_2DFFT benchmark implementation is designed to process any power-of- 
two numbers of input arrays up to the memory capacities of the machine. In fact, 
we have found that we only need to consider two cases: processing one input array, 
which we considered above for the latency-equals-period case, and processing one 
full tier of input arrays for the latency-greater-than-period case. A full tier of 
input arrays occurs when we process the precise number of input arrays that the 
aggregate number of input arrays rows equals the number of processors in the PE 
array. In Figure 12, we present empirical (worst-case or maximum output period) 
performance data that illustrates this claim. In this graph, we show three families 
of curves for the maximum output period for various number of input arrays when 
we process 512 x 512 input arrays on the MP-2 machine. There are individual 
curves for the three available machine sizes. Each of the three curves have a similar 
shape—maximum output period decreases as additional input arrays are processed 
simultaneously, then each curve levels off when there is exactly one input array 
row per PE. The number of input arrays required to achieve a full tier with one 
input array row per PE is indicated in the legend of Figure 12. Performance does 
not improve for additional tiers of input arrays: therefore, during the remainder 
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Figure 12.   Period for Multiple 512 x 512 Input Arrays 

of this subsection, we only consider processing a single, full tier of input arrays 
when discussing the performance for the latency-greater-than-period case. 

In Table 8, we present the maximum run times for both latency and period 
for all machine and input array sizes. For each machine size and input array size, 
we give the number of input arrays processed (NA) followed by the latency (Lat) 
and the normalized time per input array or maximum output period (Per). In 
general, the entries are from configurations with a full tier of input arrays, with a 
full input array row assigned per PE. There are two exceptions: 

1. The entry marked with a t appears to be an anomaly and may be an 
artifact of the configuration software. 

2. The entries marked with a * are cases when a full tier of arrays could not 
be processed due to the size limit of the IORAM. 

We ignore these exceptions as we analyze the data. In a manner similar to the 
latency-equals-period case, the empirical timing data in Table 8 have been used 
to generate Table 9, in which we present the sustained processing rate in Mflops/s 
per input array for the latency-greater-than-period case. 
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Table 8.   Maximum Times in Milliseconds for Latency Greater than 
Period 

MP-1 MP-2 

n IK 2K 4K      8K 16K IK 2K 4K 

256 NA 4 8 It       32 64 4 8 16 

Lat 793 793 54    1031 1031 219 221 251 

Per 198 99 54       32 16 55 28 16 

512 NA 2 4 8       16 16* 2 4 8 

Lat 1743 1727 2180    2187 1345 510 539 608 

Per 872 432 273      137 84 255 135 76 

IK NA 1 2 4        4* 1* 1 2 4 

Lat 3359 3466 4379    2828 313 910 1071 1212 

Per 3359 1733 1095      707 313 910 536 303 

2K NA 1 1*        1* 1* 1 2 

Lat — 7539 5641    2969 1500 — 2202 2589 

Per — 7539 5641    2969 1500 — 2202 1295 

t Anomaly perhaps due to configuration software. 
A. full tier of input arrays could not be srocessed due to IORAM s 

limitations. 

The maximum output period in Table 8 and Mflop/s per input array in Table 9 
scale nearly linearly with respect to machine size; the maximum output period is 
halved as the machine size doubles and the Mflop/s per input array doubles with 
machine size. Furthermore, the maximum output period scales with input array 
size as we expect: a factor of four increase in time as n doubles. In particular, the 
effect that we observed when processing a single input array with the IK and 2K 
MP-2—the maximum output period increasing as the machine size increased— 
does not occur when we process only full tiers of input arrays. The explanation 
for this is simple—as we increase machine size we also increase the number of 
input arrays, always mapping an entire input array row to a PE. Consequently, 
there never is an increase in the amount of communications. 
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Table 9.   Sustained Processing Rate in Mflop/s for Latency Greater 
than Period 

n IK 2K 
MP-] 
4K 8K 16K IK 

MP-2 
2K 4K 

256           NA 

Mflop/s 
4 

26.4 
8 

52.9 
It 

97.1 
32 

162.7 
64 

325.5 
4 

95.8 
8 

189.8 
16 

334.2 

512           NA 

Mflop/s 
2 

27.1 
4 

54.6 
8 

86.6 
16 

172.6 
16* 

280.7 
2 

92.5 
4 

175.1 
8 

310.4 

IK           NA 

Mflop/s 
1 

31.2 
2 

60.5 
4 

95.8 
4* 

148.3 
1* 

335.0 
1 

115.2 
2 

195.8 
4 

346.1 

2K           NA 

Mflop/s — 
1 

61.2 
1* 

81.8 
1* 

155.4 
1* 

307.6 — 
1 

209.5 
2 

356.4 

t Anomaly perhaps due to configuration software. 
* A full tier of input arrays could not be processed due to IORAM size 

limitations. 

We can also use the data in Table 8 and Table 9 to examine the actual per- 
formance improvement for the MP-2 over the MP-1. The empirical performance 
of the MP-2 shows a speed up of 3-4 over the MP-1. We see a greater increase 
in performance here than in the latency-equals-period case because interprocessor 
communications are eliminated while performing the one-dimensional FFTs—each 
entire row is placed on a single processor. 

Finally, comparing Table 6 with Table 8 shows how processing multiple input 
arrays can reduce the machine size. For example, consider 512 x 512 input 
arrays on an MP-1—a single input array has a maximum output period of 1094 
milliseconds on a IK machine: thus a larger 2K machine would be required to meet 
the period equals one second input array inter-arrival specification. On the other 
hand, the maximum output period for two input arrays processed simultaneously 
is only 872 milliseconds on the IK machine. Thus the improved efficiency of 
processing two input arrays simultaneously permits a smaller machine size to 
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meet the timing specification. In the next subsection, we extend this analysis as 

we examine real-time scalability. 

SCALABILITY OF REAL-TIME EMBEDDED SYSTEMS 

The fundamental goal of the RT_2DFFT benchmark specification is to examine 
scalability of real-time embedded high performance computing systems. The 
objective of the RT_2DFFT benchmark scalability study specification, presented 
in appendix A, requires that we determine the minimum machine size that meets 
the real-time requirement of fixed maximum output period. For reasons described 
in section 6, we have only been able to examine a subset of the input array sizes 
required by the specification—256 x 256, 512 x 512, IK x IK, and 2K x 2K. 

The RT_2DFFT benchmark specification requires two separate graphs be gen- 
erated to demonstrate scalability of the implementation. We first examine the 
minimum machine size as a function of problem size, then we examine the sus- 
tained processing utilization percentage as a function of problem and machine 

size. 

Minimum Machine Size 

Using the data presented in Tables 6 and 8, we can determine the smallest 
MP-1 and MP-2 that can meet the one-second input array inter-arrival time 
specification for the two latency cases. We present two graphs in Figure 13 
to identify smallest machine size for the two latency cases. Both graphs use 
the machine names as point labels and "MP-1,2" indicates that both machines 
achieved the specification with that machine size. The left graph shows the 
minimum machine size for the latency-equals-period case. Neither the MP-1 nor 
the MP-2 could process a 2K input array in the required time, even with the 
maximum configuration of a 16K PE array for the MP-1. The right graph shows 
the minimum machine size for the latency-greater-than-period case. Although an 
8K MP-2 was not available to test the RT_2DFFT implementation, it seems likely 
that an 8K MP-2 could meet the specification for input arrays of size 2K by 
processing a full tier of four input arrays. 

These plots assume that the necessary amount of IORAM is available and 
that the memory per PE is 64 Kbytes (recall Table 3). Note that having more 
PE memory available would not effect these plots, because the number of input 
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arrays in a full tier is independent of the PE memory as long as there is enough 
memory to accommodate a whole row on a PE. 

The only difference between the two plots in Figure 13 is the case of512x512 
input arrays on MP-ls, highlighted above in the previous subsection, and presum- 
ably the 2K x 2K input arrays. The fact that removing the latency restriction 
does not reduce the machine size in more cases is due to numerous factors. The 
primary factor is that MasPar machines are available only in discrete power-of-two 
sizes; so, the graphs in Figure 13 are relatively sparse. Because of the discrete 
nature of the number of processors, varying the specified maximum output period 
may cause this graph to look substantially different. 

This graph does illustrate two interesting scalability issues for the growth in 
machine size for two-dimensional problems. First, for input array sizes 256-1K, 
especially with the faster MP-2, our RT_2DFFT benchmark has period less than 
the specified one second—often substantially less. In these cases, the minimum 
machine size—IK processors—will be chosen. Secondly, after the maximum pe- 
riod for the IK machine is greater than the input array inter-arrival time, then 
the graphs in Figure 13 show an interesting fact—the increase in machine size is 
a factor of four for every time the number of rows is doubled. This shows some 
potential real-time scalability challenges when attempting to use the MasPar ar- 
chitecture for two-dimensional problems. As we scale the size of the problem, the 
MasPar MPPs will require the maximum 16K processors after doubling the input 
array size only twice. 
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Sustained Processing Utilization 

To conclude this section on real-time scalability, we examine the sustained pro- 
cessing utilization percentage as a function of problem and machine size. Sustained 
processing utilization percentage is defined in appendix A as the quotient of the 
sustained processing rate divided by the theoretical peak processing rate. The sus- 
tained Mflops/s processing rate is defined as 10n2 log2 «/(maximum period). Note 
that this metric uses the maximum period for a benchmark run, which means any 
performance disruption due to the OS that would affect real-time predictability 

is factored into this metric. 

Our definition of sustained processor utilization percentage should be used 
for relative comparisons, rather than as an absolute metric. We have observed 
percentages approaching 100%—a situation that is seemingly impossible, since 
we use the maximum Mflops/s rating for the machine in the calculation. An 
explanation for these observations may be found in the formula used to calculate 
the number of floating point operations for an FFT: 10n2 log2 n. The actual 
number of floating point operations may be less. It is conceivable that the built-in 
FFT routines have been optimized to limit the number of floating point operations 
at the expense of more complicated code relying on faster integer operations. 
Consequently, the true sustained processor utilization percentages are most likely 

lower than what we report below. 

We present graphs of sustained processing utilization in two different formats: 

1. Sustained processing utilization as a function of input array size for the 
2K processor MasPar MPPs (Figure 14), 

2. Sustained processing utilization for various machine sizes (Figure 15). 

Each of the figures has two separate graphs—for both the MP-1 and MP-2 ma- 

chines. 

In Figure 14, we present families of curves in each graph of sustained processor 
utilization versus input array size for: 

•       Full tier (FFT)—considers only timing for the FFTs and corner turn for 
adequate input arrays that a full row is assigned to a single processor, 
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Full tier (Total)—considers both FFT and I/O timings for adequate input 
arrays that a full row is assigned to a single processor, 

Single (FFT)—considers only timing for the FFTs and corner turn for a 
single input array, 
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•       Single (Total)—considers both FFT and I/O timings for a single input 

array. 

Sustained processor utilization is significantly better for the full tier case than 
the single input array case, until such a point that a single input array meets 
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the criteria of also being full tier. This occurs when we examine performance of 
a 2K input array on the 2K processor machine. In general, sustained processor 
utilization is monotonically increasing for the single input array case; however, 
this cannot be said for the full tier case. This is not unexpected, because there 
is reduced communications as input array size increases for a single input array. 
Meanwhile, for the full tier case, the amount of communications remains fixed, 
and only the communications pattern changes for the corner turn. 

When comparing the two graphs in Figure 14, we can compare the performance 
for the MP-1 and MP-2. The sustained processor utilization is much higher for 
the slower MP-1, because while the MP-2 has faster processors, interprocessor 
communications capabilities remain the same. The differences in sustained pro- 
cessor utilization is significant for the two machines. Full tier FFT sustained 
processor utilization is generally greater than 90% for the MP-1; meanwhile, the 
corresponding curve for the MP-2 shows that sustained processor utilization is 
less than 60%. As stated above, this disparity in performance is caused by the 
relationship between computation and interprocessor communications on the two 
machines. 

When comparing sustained processor utilization for FFT-only and total tim- 
ings, it is evident that we cannot hide the I/O from the simulated data source and 
to the data sink. Because of the SIMD nature of the MasPar MPPs, there is no 
way to double buffer data as it is moved from the data source to the PE array and 
back to the data sink. Sustained processor utilization for floating point operations 
is greatly reduced when the time for I/O is included in maximum period. 

In Figure 15, we present families of curves in each graph of sustained proces- 
sor utilization for all possible machine sizes with which we tested the RT_2DFFT 
implementation. Again, there are separate graphs for each of the two machines 
with five separate curves for sustained processor utilization on the MP-1 and 
three separate curves for the MP-2. We present sustained processor utilization 
curves only for the FFT-only timings for a single input array. This figure shows 
that sustained processor utilization is better for smaller machines—an observation 
that should be obvious because there is reduced interprocessor communications 
required to perform a two-dimensional FFT when more data is on each processor 
that performs the one-dimensional FFTs on the rows and columns. There is 
better sustained processor utilization on the MP-1 than the MP-2, although there 
is greater variance for small input array sizes on the MP-1 than on the MP-2. 
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It is instructive to examine those points in Figure 15 that correspond to 
the minimum machine that meet the one second period constraint for the case 
when the latency equals the period. For the MP-1, a nearly constant FFT-only 
utilization percentage between 40% and 50% is maintained as the input array 
size is increased from 256 to IK. Maintaining constant resource utilization as the 
problem size increases is very useful from the standpoint of embedded applications. 

This figure also shows that sustained processor utilization follows a trend com- 
mon with the other scalability metrics in parallel processing—as we increase the 
number of processors, we must increase the input array size or problem size, other- 
wise sustained processor utilization can decrease significantly. This is attributed 
to interprocessor communications overhead. As we spread a constant amount 
of work over additional processors, there will be additional communications— 
overhead that is not be encountered on the smaller machine size. In general, 
there may also be unavoidable sequential processing that does not map to the 
larger machine. 
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SECTION 8 

CONCLUSIONS 

This paper reports on the implementation of the RT_2DFFT benchmark devel- 
oped for the MasPar MP-X series of MPPs. This is the first attempt to extend the 
real-time embedded benchmarking methodology described in (Games, 1996) to a 
platform other than the Intel Paragon. Our conclusions are divided into three 
subsections. In the first subsection, we present our conclusions on the lessons 
learned relative to the overall real-time embedded benchmarking methodology. 
We then present our conclusions on the performance of the MasPar RT_2DFFT 
benchmark implementation. In the last subsection, we include a discussion of 
transitioning our results for the MP-1 and MP-2 machines to MasPar's newest 
machines, the MP-3 and a scalable ensemble processor. 

REAL-TIME EMBEDDED BENCHMARK METHODOLOGY 

An important motivation in developing the MasPar RT_2DFFT benchmark im- 
plementation was to evaluate the overall real-time embedded benchmark method- 
ology proposed in (Games, 1996). Our RT_2DFFT implementation revealed little 
yet unseen in previous work on the Intel Paragon (Brown, 1994; Brown, 1995), 
even though there are significant architecture differences between the MIMD Intel 
Paragon and the SIMD MasPar MPPs. The MasPar RTJ2DFFT implementation 
was simple and straight forward. When MIMD architecture guidelines are inap- 
propriate for the SIMD machine, modifications to the guidelines have been made 
that maintained the spirit of the RT_2DFFT benchmark. In spite of the differences 
in architectures, each point in the original guidelines have been maintained—with 
appropriate modifications. These modifications centered around the implementa- 
tion of the data source and sink and the implementation differences that result 
from the architecture differences between individual MIMD processing nodes ver- 

sus a SIMD PE array. 

MASPAR RT_2DFFT BENCHMARK IMPLEMENTATION 

The SIMD architecture of the MasPar MPPs limited the options available when 
implementing the RT_2DFFT benchmark. A SIMD architecture can only process 
either a single synchronous problem or multiple synchronous problems simulta- 
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neously. The combination of the relatively straight forward synchronous, data 
parallel software architecture of the MasPar with the flexibility of the supplied 
library functions, contributed to the ease of implementing the MasPar RTJ2DFFT 
benchmark. In particular, software engineering for the MasPar RT_2DFFT bench- 
mark implementation has been greatly simplified by the use of MPL—a C-like 
programming language. Once, the RT_2DFFT benchmark methodology was con- 
ceptually ported to a synchronous, data parallel architecture, the implementation 
was straightforward. 

The MasPar library functions were sufficiently robust and flexible that we 
developed a single implementation to handle the two latency cases: latency equal 
to the period, and latency greater than the period. Each latency case has a 
distinct solution. When latency must equal the period, all PE array resources 
must be assigned to the task of processing a single input array. The RTJ2DFFT 
benchmark requirement to find the smallest machine able to process the input 
array within the specified inter-arrival time ensures that the entire PE array 
participates in the processing. For the latency-greater-than-period case, the most 
efficient data/processor mapping is to assign an entire row of an input array 
to each processor by processing sufficient input arrays simultaneously to fill the 
entire machine. There is no additional processing performance gain achievable by 
placing multiple input array rows per processor or multiple tiers of input arrays 
on the machine to fill available memory on the PE array. On the contrary, in 
some instances the amount of required memory per processor element can be 
reduced, effectively reducing the size, weight, power consumption, and cost of the 
computer. 

An important feature of the RT_2DFFT benchmark methodology is the ability 
to examine performance predictability, regardless of the effects of the operating 
system and other effects beyond the user's control. If there is a clear understanding 
of predictability, it is possible to use computers with non-real-time operating sys- 
tems for real-time processing. We found that when using the RT_2DFFT benchmark 
implementation, it was possible to get very predictable results—as long as all user 
activity on the PE array was limited to our benchmark. Our results show that 
much of the measured variability occurred as a side-effect of collecting the timing 
data that required an operating system call to the UFE processor. We illustrated 
this in timing tests when we compared multiple fifteen minute program runs on 
the MP-1. There was substantially more timing variability with clock insertions 
for each of five program sections than when performing only a single global clock 
insertion.   Because parallel programs running on the MasPar MPP can be run 
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with essentially no interaction with the UFE, the MP-X architecture can provide 
excellent predictability and consequently, excellent real-time performance. 

Our RTJ2DFFT benchmark implementation tests show that the MasPar MP-1 
and MP-2 can process 256 x 256, 512 x 512, and IK x IK single precision 
complex input arrays within the one second inter-arrival time requirement. The 
smallest machine capable of meeting the timing specification for the latency-equal- 
period case varied from IK to 8K for the MP-1 while a IK MP-2 was able to 
process each of the three input array sizes successfully. We were in fact unable to 
process a 2K x 2K input array in the required inter-arrival time on either of the 
MasPar machines that we used to test our RT_2DFFT implementation; however, 
we anticipate that we should be able to process a 2K x 2K input array on an 
8K processor MP-2 within the one second inter-arrival time requirement. We 
have shown that the implementation for the latency-greater-than-period case has 
reduced the measured periods, and in one instance, we could have reduced the 
machine size by accepting increased latency. 

We identified constraints on maximum problem size for two-dimensional ap- 
plications with single precision complex data array elements and with output 
streams as great as the input array stream. Some constraints are due to the 
hardware architecture and some constraints are due to the computational capa- 
bilities. Constraints on maximum PE memory impose a potential limitation on 
input array sizes of 8K x 8K rows and columns. Furthermore, maximum IORAM 
memory constraints reduce the maximum input array size to 4K x 4K rows and 
columns, and maximum I/O subsystem bandwidth constraints further reduce the 
maximum input array size to only 2K x 2K rows and columns. 

Processing input arrays larger than 2K x 2K would not be possible on either 
the MP-1 or MP-2 even if I/O subsystem bandwidth limitations are overcome, 
assuming that we maintain the one second period requirement. We found that 
as the number of rows in the input array are doubled, the number of processors 
required to meet a constant timing requirement must increase by at least a factor of 
four. While this in not unexpected when processing two-dimensional input arrays 
for a two-dimensional FFT application, present MasPar processors are limited 
to only 16K processors and consequently growth to larger input arrays would be 
limited by the maximum size of the PE array. Given the trends apparent in the 
data, at least a 32K processor machine or a system speedup of a factor of four 
would be required to handle a 4K x 4K input array. 
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EXTENDING THE MASPAR RT_2DFFT BENCHMARK IMPLEMEN- 
TATION 

An important concern when developing the RT_2DFFT benchmark is the exten- 
sibility of the benchmark to other applications and to other hardware, including 
new versions of an architecture. We design and implement an algorithm on an 
existing architecture; however, we must predict performance for future architec- 
tures (Koester, 1995). Performance predictions for future architectures will help 
determine whether or not to port larger applications to existing hardware or to 
wait and look for performance improvements to make implementation of another 
application feasible. 

Our RT_2DFFT implementation was run on available MasPar MP-1 and MP- 
2 MPPs, and we must consider the extensibility of this work to future SIMD 
MPPS from MasPar. The basic MasPar MPP architecture has been relatively 
unchanged since its introduction in 1990. The unusually long lifespan of the 
MasPar MP-X series MPP technology is attributable to architecture scalability, 
leveraging the best computer science technologies, adherence to standards, and 
cost effective manufacturing techniques. MasPar is currently developing the MP-3; 
although, there is little non-proprietary performance information available on this 
new machine. It has been announced that the MP-3 parallel processing array 
architecture will be similar to the previous MasPar MPPs, but will be designed to 
be faster and eventually will be packaged for embedded applications in conjunction 
with the Litton Corporation. 

The MP-2 series saw increased processor performance by a factor of four over 
the MP-1, although router-based network performance was not enhanced in the 
MP-2. Our performance results illustrated that we were unable to get full benefit 
of the increased processor performance, because communications capabilities did 
not scale with processor performance. For parallel algorithm performance to scale 
with respect to processor performance increases, interprocessor communications 
performance must increase at least as much as processor performance. History 
has shown that increases in processor performance have been easier to achieve 
than increases in communications performance. 

If both processor performance and the router-based communications network 
were to see an increase in performance similar to the processor performance in- 
crease between the MP-1 and MP-2 architectures—a factor of four—we would ex- 
pect significant decreases in the size of machines required to perform the RT_2DFFT 
benchmark. Given such a significant performance increase, even more complicated 
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applications like SAR processing could be performed within the specified input 
array inter-arrival time. In addition, if the new machine had parallel external 
access to the I/O subsystem, then the MasPar MP-3 could process larger in- 
put arrays, with array size limitations imposed by memory limitations and not 
I/O bandwidth. It might even be possible to perform two-dimensional FFTs on 
8K x 8K input arrays. 

DARPA has also funded MasPar to examine a scalable ensemble—multiple 
MasPar PE arrays interconnected by extensions to the router-based communi- 
cations system. A scalable ensemble MPP would be a hybrid processor that 
combined MIMD and SIMD architectures. The MasPar RT_2DFFT benchmark 
methodology and implementation would change significantly for the scalable en- 
semble architecture. For a cluster of MasPar PE arrays interconnected by the 
MasPar global router, separate programs could be implemented on each of the 
individual PE arrays and data pipelined between the PE arrays. As a result, 
the new RT_2DFFT implementation for this ensemble architecture would combine 
features of both the RT_2DFFT MIMD and SIMD implementations. 

The COTS MasPar architecture has strong potential for use as a real-time 
processor; although, the presently available hardware only can meet the RT_2DFFT 
benchmark requirements for a limited number of input array sizes due to system 
performance limitations and I/O bottlenecks. Additional work on the MasPar 
RT_2DFFT benchmark would be warranted for the MasPar MP-3 or the new scalable 
ensemble architecture, if interprocessor communications performance is improved 
commensurate with processor performance and if parallel external I/O capabilities 
are developed. As a result, performance would scale and larger input arrays or 
more complicated problems can be addressed in real-time on these new MasPar 
architectures. 

We emphasize that all the results apply to the RT_2DFFT benchmark spec- 
ification given in appendix A. This benchmark specification maintains a one 
second inter-arrival period independent of input array size. As such, it represents 
a substantial real-time test of the underlying hardware and system software as 
the input array size is increased. Any actual application that would require such 
two-dimensional FFT processing, e.g., SAR, could have a longer inter-arrival time 
and specific latency requirements. The parametric benchmarking techniques and 
infrastructure described in this report could be easily adapted to assess the suit- 
ability of the MasPar MP-X architecture for a particular target application once 
the actual real-time requirements are specified. 
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APPENDIX A 

RT_2DFFT: REAL-TIME SYMMETRIC TWO-DIMENSIONAL FFT 
BENCHMARK SPECIFICATION 

The RT_2DFFT benchmark was proposed in (Games, 1996) as a test of a pro- 
posed benchmarking methodology for real-time embedded scalable high perfor- 
mance computing. The two-dimensional FFT benchmark is a kernel commonly 
used in synthetic aperture radar (SAR) processing, among other applications. In 
this benchmark, the two-dimensional FFT is treated as a compact application 
to illustrate the proposed real-time benchmarking methodology. The benchmark 
assesses the parallel processor's ability to deliver high sustained utilization on 
an FFT. It also assesses the performance impact of a distributed corner turn 
global communications operation. This is particularly relevant as the problem 
size increases and more distributed processing resources are required to meet the 
real-time requirement (as in higher resolution and/or wider area SARs). The 
RT_2DFFT benchmark specification consists of a benchmark specification, a timing 
specification, a scalability study specification, and implementation guidelines. 

Notation 

In the following, the complex numbers are denoted by C. The set of vectors of 
size n with entries in a set X is denoted by Xn; the set of two-dimensional input 
arrays of size mxnis denoted by XmXn. For an input array A— {a;j} G XmXn, 
the notation a^* denotes the ith row of A and a*j denotes the jth column of A. 

Functional Specification 

We assume the availability of an FFT algorithm, y = FFT(cc, FFTsize), where 
x and y are complex vectors of size FFTsize and y is the discrete Fourier transform 
(DFT) of x. See for instance (Press, 1986), page 381. For n a positive integer, the 
RT_2DFFT benchmark applies the FFT to the rows of an n x n input matrix A to 
form the intermediate matrix Y. The output matrix Z is then formed by applying 
the FFT to the columns of Y. The functional specification of the RT_2DFFT 
benchmark is given in Figure A-l. Single precision floating point processing is 
assumed. 
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y = RT_2DFFT(A, n) 
Input: n a positive integer 
Input: A = {a{j} G CnXn 

Auxiliary:     Y = {yij} eC"x" 

Output: Z = {zij} G Cnxn 

Algorithm: 
for i G {0,1,..., n - 1}, yt> = FFT(at>, n) 
for ; G {0,1,..., n - 1}, zmj = FFT(y»,j, n) 

Figure A-l.   The RT_2DFFT Benchmark Functional Specification 

Timing Specification 

The timing specification of the RT_2DFFT benchmark is given in terms of a 
periodic sequence of input matrices At, A2, A3,... Aj,   Two requirements are 
typical in these periodic applications: the period is the time interval between 
successive input matrices, and the latency is the length of time required to process 
a single instance A{, measured as the interval of time between when the matrix 
Ai leaves the data source and the corresponding results arrive at the data sink. 
This benchmark fixes the period at 1 second and considers two separate latency 
cases: 

Case 1: period = latency = 1 second 

Case 2: period = 1 second, no constraint on latency 

The 1 second period for n = 1024 or 2048 corresponds roughly to the com- 
putational requirements of the SAR system described in (Zuerndoerfer, 1994). In 
the RTJ2DFFT benchmark the timing specification is fixed for all problem sizes. 

Scalability Study Specification 

The scalability study for the RT_2DFFT benchmark increases the size of the 
n x n input matrix, while the period and latency is kept fixed. The objective is to 
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Table A-l.   Processing Rate and Memory Requirements for the 
RT_2DFFT Benchmark 

n Mflop/s Mbytes 

256 5.2 0.5 
512 23.6 2.0 

1,024 104.9 8.0 
2,048 461.4 32.0 
4,096 2,013.3 128.0 
8,196 8,724.2 512.0 

16,384 37,581.0 2048.0 

determine the minimum machine size that meets the real-time requirement. The 
values of n to be considered are: 256, 512, 1024, 2048, 4096, 8192, and 16,384. Ta- 
ble A-l shows the computational throughput requirements expressed in Mflop/s. 
We assume an FFT of length n requires 5nlog2n floating point operations, so 
that the total number of floating point operations for the RT_2DFFT benchmark is 
10n2 log2 n. This requirement is common to both latency cases and is based on 
the single period of 1 second. Table A-l also shows the memory requirements in 
megabytes (Mbytes) to store one copy of the input matrix, assuming 8 bytes per 
element (single precision floating point complex). 

Implementation Guidelines 

1. The input matrix must be stored originally on a source node in memory 
that is not directly associated with the processors that implement the 
RT_2DFFT benchmark. The matrix must be stored in row major or column 
major form. 

2. When establishing timing performance, the same matrix can be repeat- 
edly input to the processors that implement the RT_2DFFT benchmark (to 
avoid the need for disk I/O). 
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The results must be output to a sink node and stored in memory not 
directly associated with the processors that implement the RTJ2DFFT 
benchmark. The result matrix must be stored in row major or column 
major form. 

The source and sink nodes may be implemented on the same or different 
processing nodes. 

The processing latency for a problem instance is measured as follows. 
A time stamp ts is calculated at the data source right before the input 
data for this instance is sent from the source node. A second time stamp 
tc is calculated at the data sink right after the corresponding results 
are received by the sink node. The processing latency for this problem 
instance is then (tc — ts). This requires a synchronized global clock if the 
source and sink are on physically separated nodes. Period measurements 
are calculated as the difference of successive values of tc corresponding 
to successive problem instances. Latency and period measurements can 
be calculated off-line from the time stamp data. 

In the case that the input matrix (and output matrix) does not fit in 
the memory of a single node, then multiple source and sink nodes are 
necessary. The time stamp ts of a problem instance should occur before 
any data is sent from the multiple sources. The processing of that instant 
is considered completed when all sink nodes have received all their results. 

A benchmark run to establish timing performance should last for at least 
15 minutes to account for any operating system dropout problems. 

The following information and statistics should be calculated for a single 
benchmark run (during a post processing stage): 

a. Histogram of period measurements. Maximum, average, and mini- 
mum period. The benchmark is considered valid only if the maxi- 
mum period observed is less than or equal to the period specifica- 
tion: 1 second. This must be repeatable. 

b. Histogram of latency measurements. Maximum, average, and min- 
imum latency. The benchmark is considered valid only if the max- 
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imum latency observed is less than or equal to the latency specifi- 
cation. This must be repeatable. 

c. Some small number of initial problem instances can be ignored to 
eliminate start-up anomalies, if present. If this is done then the 
number of ignored instances should be stated. 

9. Machine size is measured in terms of the number of processing nodes 
used, not including processing nodes used to implement the source and 
sink. Standard commercial-off-the-shelf hardware and system software 
configurations should be used. If a machine supports multiple config- 
urations (for example, different amounts of memory at the processing 
nodes), then these different configurations must be itemized and bench- 
marked separately. The size, weight, power, and price of each machine 
should be determined and expressed as a function of machine size. 

10. The maximum period for a benchmark run is used to determine the 
sustained Mflop/s processing rate: 10n2 log2 nj(maximum period). This 
value should be divided by the theoretical peak processing rate of the 
size machine used in the processing to determine the sustained processing 

utilization percentage. 

11. The following scalability plots should be generated for each latency case: 

a. Minimum machine size as a function of problem size. 

b. Sustained processing utilization percentage as a function of problem 

size. 
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APPENDIX B 

MASPAR INDEX-BIT PERMUTATIONS 

In this appendix, we discuss a set of MasPar subroutine calls that perform 
certain internal communications called index-bit permutations. These routines 
allow for a very efficient implementation of the two data rearrangements required 
by the RT-2DFFT benchmark implementation. One rearrangement is the shift 
needed to put the data in cut-and-stack form and the other rearrangement is the 
data transpose used for the corner turn. We will describe the specifics of each of 
these functions after we give an overview of the philosophy behind the index-bit 

permutations. 

Consider a plural data set where each PE contains a linear array of data of 
some fixed length, which for simplicity we take to be a power of two. Let 2k be 
the length and suppose that there are 2q PEs. Then every data element in the 
plural set can be specified by a unique (q + k)-bit index: 

PE bits Mem bits 

(j3o,Pi,*..,pq-i] rn0,m1,*..,mk-i) (B" 1) 

We are not concerned with the actual size of the data element, since the routines 
can move data elements of any size in byte increments (e.g., in the RTJ2DFFT 
benchmark implementation, a data element is a single precision complex using 

eight bytes). 

The goal of the index-bit permutations is to permute the data elements by 
simple permutations of the bit representation. That is, we permute the bits in 
the index given in equation B-l, say for example, by switching p0 with m0. The 
data elements are then themselves permuted consistent with the permutation of 
their indices. There are several options for permutations of the bit representation. 
Some permutations only permute PE bits; others interchange PE bits with Mem 

bits. 

Cut-and-Stack 

As we mentioned in the MasPar performance section, the fastest method for 
reading data from the IORAM is to read a contiguous portion of the data onto 
a PE and then to rearrange the data into the required cut-and-stack form. We 
illustrate this mapping for a set of four PEs acting on a row of length 32; the data 
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are input as in the left matrix below and must be transformed to trie matrix on 
the right: 

0 8 16 24 0 12     3 
1 9 17 25 4 5     6     7 
2 10 18 26 8 9    10 11 
3 11 19 27 12 13   14 15 
4 12 20 28 "* 16 17   18 19 
5 13 21 29 20 21   22 23 
6 14 22 30 24 25   26 27 
7 15 23 31 28 29   30 31 

In this example there are 3 Mem bits, since the columns are length eight. The 
number of PE bits could be any q > 2, but since only 4 PEs are used for a row, 
only the lowest 2 PE bits are used for the given row. There are then five bits total 
for the data in the row, say a,b,c,d,e (from lowest to highest). The higher two 
bits d and e are the PE bits. We need to change 

(d,e,p2,...,pq„1;a,b,c) to (a, b,p2,... ,p,_i; c,d, e). 

If we ignore for the moment the p{ bits, then we see that we must change 
(d,e,a,b,c) to (a,b,c,d,e). This is just a cyclic shift of (d,e,a,b,c) by three 
to the right. The p{ bits are fixed and not permuted. The final result is that 
we perform the same data rearrangement for every row of every two-dimensional 
input array, because the index of the rows and arrays are expressed by the p{ bits. 

There is a specific routine, called cshift_pm that is designed to do precisely 
this mapping. We can perform the rearrangement of the data to cut-and-stack 
form with just one call to this routine. This transformation is not required when 
more than one tier of input arrays is processed, since only one PE is used per row 
(so there are zero PE bits needed for the row index). 

Corner Turns 

The corner turn of a two-dimensional data array is conceptually similar to the 
transformation used in the cut-and-stack mapping, but we require two index-bit 
routines. For the corner turn, we start with data in cut-and-stack and consider 
bits used to index rows of the input array (r{), columns of the input array (a), 
and possibly any multiple input arrays (a,-). The data elements are specified by 
the index 

(r0,.. .,?-<_!, c0,... ,cs_!,a0, •• . ,a9_s_f_1;r/,. . .,rs_a), 
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where as always PE bits are given first, t is the number of PE bits used for a 
single row, and s is the number of bits required for the data array size (i.e., we 
process 2s x 2s data arrays). The corner turn performs a transpose of the data 
that interchanges r; and c,-. That is, the final index is given by 

(c0,... ,Cf_i,r0,. • • ,rs_i,a0, • • • ,ag_s_t_i;ct,... ,cs_i). 

The first step to do the corner turn is to swap the Mem bits with the appro- 
priate PE bits. This is done using the swap_pm subroutine and results going from 
the starting index 

(r0,. • •, rt_i, c0,..., c4_i, ct,..., cs_i, a0,. ■ ■, ag_s_t_i; rt,..., rs_i) 

to an intermediate index 

(r0,... ,rt_i,c0,..., ct_i,rt,...,rs_i,a0,... ,ag_s_t_i; Q,... ,cs_ij 

by swapping the two indicated blocks of bits. The next step is just to exchange the 
lower order r,- and q. This is done using the xchng_pp subroutine and transforms 
the intermediate index 

(r0,..., rt_i, c0,..., Ci_i, rt,..., rs_i, a0,..., ag_s_t_i; ci5..., cs_i) 

to 
(co,..., ct-i, r0, • • •, rt_i, rt,..., rs_i, a0,..., ag_s_f_i, ct,..., cs_ij 

by exchanging the indicated blocks of bits. This last index is in the desired final 
form. Notice that the a; bits are fixed and never permuted. This means that each 
two-dimensional data array is transposed by itself. When more then one tier of 
arrays is processed, we need to call the two subroutines separately for each tier. 
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APPENDIX C 

MASPAR MP-1 RT_2DFFT BENCHMARK DATA 

This appendix gives a complete set of data from the short ten-iteration runs 
of the RT-2DFFT benchmark implementation on the MP-1 machine. Specifications 
for the MP-1 machine are given in Table C-l. The MP-1 machine was made 
available by NPAC at Syracuse University; the runs were made in September, 
1995. A separate table is given for each software configured machine size; these 
are Tables C-2 to C-6. The tables indicate limitations due to the capacity of the 
IORAM; when there was insufficient IORAM capacity, only the time to perform 
the 2D FFT processing is reported. All times are in milliseconds and are the 
maximum time for the ten iterations after ignoring the initial iteration. The 
range of times for the ten iterations were almost always 10-20 milliseconds. 

The headings in these tables are as follows: 

n The size of the input array, that is, n x n. 

NA The number of input arrays processed simultaneously. 

NT The number of tiers of input arrays. 

Lat The total time needed to process the input arrays—the latency. 

Per The time to process all of the input arrays divided by the number of 

input arrays—the period. 

Read The time to read from the IORAM to the PE array. An "—" signifies 
that there was inadequate IORAM to provide both data source and sink. 

FFTR The time to compute the ID FFTs on the rows of the input arrays. 

CT The time to perform a corner turn on the data arrays. 

FFTc The time to compute the ID FFTs on the columns of the data arrays. 

Write The time to write from the PE array to the IORAM. An "—" signifies 
that there was inadequate IORAM to provide both data source and sink. 

83 



Table C-l.   Specifications of the MP-1 Machine 

MP-1 

Front-End DECstation 
FEOS Ultrix V4.3 

PE Array 16K = 128 x 128 
ACU IMEM 1 Mbytes 

ACU CMEM 1 Mbytes 
PEMEM 64 Kbytes 

IORAM Size 32 Mbytes 

Table C-2.   IK MasPar MP-1 Empirical Data 

n NA NT Lat Per Read FFTR CT FFTc Write 

256 1 1 282 282 78 56 31 59 70 
2 1 559 280 161 129 39 133 134 

4t 1 793 198 290 129 55 129 231 
8 2 1579 197 565 250 106 247 451 

16 4 3145 197 1118 486 222 474 887 
32 8 6277 196 2223 958 430 949 1769 

512 1 1 1094 1094 312 250 47 254 258 
2t 1 1743 872 563 314 146 313 454 
4 2 3465 866 1117 616 279 618 887 
8 4 6922 866 2223 1212 543 1216 1769 

IK It 1 3359 3359 1118 617 169 617 887 
2 2 6711 3356 2220 1223 321 1224 1767 

t Full tier of input arrays. 
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Table C-3.   2K MasPar MP-1 Empirical Data 

n NA iVT Lat Per Read FFTfi CT FFTC Write 

256 1 1 126 126 28 32 20 32 23 

2 1 287 144 83 56 36 59 63 

4 1 559 140 161 133 32 126 134 

8t 1 793 99 285 129 59 129 231 

16 2 1587 99 567 242 111 243 454 

32 4 3149 98 1118 484 232 485 888 

64 8 6301 98 2223 949 455 945 1767 

512 1 1 593 593 163 133 59 137 137 

2 1 1122 561 317 251 78 254 257 
4t 1 1727 432 565 310 129 313 453 

8 2 3441 430 1118 618 250 614 888 

16 4 6865 429 2223 1215 488 1216 1770 

IK 1 1 2341 2341 629 559 126 560 513 

2t 1 3466 1733 1118 618 278 616 886 

4 - 2 6930 1733 2219 1223 547 1223 1770 

2K It 1 7539 7539 2305 1485 406 1484 1859 

t Full tier of input arrays. 
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Table C-4.   4K MasPar MP-1 Empirical Data 

n NA iVT Lat Per Read FFTfl CT FFTC Write 

256 1 1 54 54 12 16 12 20 12 
2 1 133 67 27 31 24 32 24 
4 1 288 72 79 58 39 56 63 
8 1 556 70 165 125 36 129 133 

16* 1 1028 68 412 125 59 125 335 
32 2 2036 64 804 246 113 242 665 
64 4 4063 63 1599 485 232 484 1319 

128 8 3376* 3376* — 950 454 947 — 

512 1 1 302 302 78 63 36 62 67 
2 1 607 302 160 134 70 137 138 
4 1 1349 337 438 250 79 255 371 
8+ 1 2180 273 806 314 133 314 664 
16 2 4353 272 1601 614 250 614 1321 
32 4 2941* 2941* — 1215 485 1212 — 

IK 1 1 1411 1411 439 255 134 255 367 
2 1 2829 1415 867 556 160 556 730 

4t 1 4379 1095 1598 617 278 617 1321 
8 2 3008* 3008* — 1223 544 1222 — 

2K 1 1 5641 5641 1739 1109 276 1105 1453 
2* 1 3523* 3523* — 1489 548 1486 — 

* Full tier of input arrays. 
* Two-dimensional FFT timing only. 
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Table C-5.   8K MasPar MP-1 Empirical Data 

n NA 7Vr Lat Per Read FFTH CT FFTc Write 

256 1 1 51 51 16 12 8 12 12 
2 1 55 28 12 16 12 19 8 
4 1 133 33 28 35 24 31 24 
8 1 288 36 82 56 39 55 63 

16 1 602 38 185 133 39 133 156 
32* 1 1031 32 406 129 59 129 337 
64 2 2047 32 806 239 134 243 661 

128 4 1211* 1211* — 481 250 484 — 

256 8 2408* 2408* — 949 489 949 — 

512 1 1 134 134 27 36 19 35 25 
2 1 314 157 83 63 43 63 63 
4 1 645 161 191 129 67 136 160 
8 1 1341 168 433 251 71 247 369 

16+ 1 2187 137 806 314 134 314 666 
32 2 1485* 1485* — 614 255 615 — 

64 4 2949* 2949* — 1219 497 1215 — 

IK 1 1 684 684 192 145 72 150 160 
2 1 1418 709 438 254 149 254 367 
4 1 2828 707 863 558 161 556 730 
8t 1 1481* 1481* — 617 266 617 — 

16 2 2976* 2976* — 1222 517 1223 — 

2K 1 1 2969 2969 872 572 260 568 729 
2 1 2516* 2516* — 1110 313 1107 — 

4t 1 3524* 3524* — 1485 548 1483 
" 

* Full tier of input arrays. 
* Two-dimensional FFT timing only. 
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Table C-6.   16K MasPar MP-1 Empirical Data 

n NA NT Lat Per Read FFTÄ CT FFTc Write 

256 1 1 40 40 12 12 8 12 8 
2 1 50 25 12 12 8 12 12 
4 1 60 15 12 16 15 16 12 
8 1 133 17 28 36 23 35 24 

16 1 289 18 79 55 39 55 63 
32 1 605 19 185 133 39 133 152 
64+ 1 1031 16 407 125 59 128 337 
128 2 613* 613* — 243 133 243 — 

512 1 1 86 86 19 24 12 23 20 
2 1 137 69 24 36 23 35 24 
4 1 312 78 81 62 43 63 65 
8 1 642 80 191 134 70 137 157 

16 1 1345 84 438 251 71 255 371 
32+ 1 742* 742* — 315 133 313 — 

IK 1 1 313 313 86 63 39 63 70 
2 1 688 344 192 144 83 150 157 
4 1 1418 355 438 253 148 254 367 
8 1 1263* 1263* — 559 161 559 — 

16+ 1 1481* 1481* — 617 266 613 — 

2K 1 1 1500 1500 445 277 157 282 372 
2 1 1411* 1411* — 571 287 570 — 

4 1 2517* 2517* — 1111 311 1110 — 

8+ 1 3520* 3520* — 1488 547 1488 — 

+ Full tier of input arrays. 
* Two-dimensional FFT timing only. 
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APPENDIX D 

MASPAR MP-2 RTJ2DFFT BENCHMARK DATA 

This appendix gives a complete set of data from the short ten-iteration runs of 
the RTJ2DFFT benchmark implementation on the MP-2 machine. Specifications for 
the MP-2 machine are given in Table D-l. The MP-2 machine was made available 
by the MasPar Computing Corporation; the runs were made in September, 1995. 
A separate table is given for each software configured machine size; these are 
Tables D-2 to D-4. All times are in milliseconds and are the maximum time for 
the ten iterations after ignoring the initial iteration. The range of times for the 
ten iterations were almost always 1-6 milliseconds. 

The headings in the tables are defined in appendix C. 

Table D-l.   Specifications of the MP-2 Machine 

MP-2 

Front-End Alpha Workstation 
FEOS Digital UNIX (0SF1) 

PE Array 4K = 64 x 64 
ACU IMEM 4 Mbytes 

ACU CMEM 512 Kbytes 
PEMEM 64 Kbytes 

IORAM Size 128 Mbytes 
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Table D-2.   IK MasPar MP-2 Empirical Data 

n NA iVT Lat Per Read FFTH CT FFTC Write 

256 1 1 119 119 22 29 22 29 18 
2 1 231 116 43 64 31 64 35 

4t 1 219 55 72 27 41 27 58 
8 2 436 55 140 55 78 55 113 

16 4 866 54 278 111 155 111 228 
32 8 1728 54 553 217 307 216 451 

512 1 1 427 427 86 123 35 124 72 
2t 1 510 255 139 77 111 78 113 
4 2 1015 254 278 153 216 151 227 
8 4 2026 253 553 301 433 300 450 

IK It 1 910 908 289 136 120 136 240 
2 2 1816 908 579 268 236 269 474 

* Full tier of input arrays. 
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Table D-3.   2K MasPar MP-2 Empirical Data 

n NA 
iVT Lat Per Read FFTfi CT FFTc Write 

256 1 1 67 67 13 17 12 17 11 
2 1 123 62 22 29 28 29 18 
4 1 225 56 43 64 26 64 35 
8t 1 221 28 72 27 44 27 59 
16 2 439 27 140 54 81 54 114 
32 4 872 27 278 110 162 111 228 
64 8 1743 27 553 216 321 216 450 

512 1 1 249 249 46 63 50 63 36 
2 1 451 226 85 121 61 122 73 
4t 1 539 135 163 79 94 79 137 
8 2 1072 134 328 152 185 152 269 

16 4 2138 134 650 302 363 302 533 

IK 1 1 964 964 195 259 94 261 165 
2t 1 1071 536 328 137 216 138 269 
4 2 2137 534 649 269 427 268 532 

2K It 1 2202 2202 650 357 318 357 532 

t Full tier of input arrays. 
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Table D-4.   4K MasPar MP-2 Empirical Data 

n NA 7VT Lat Per Read FFTß CT FFTC Write 

256 1 1 31 31 5 8 7 8 5 
2 1 73 37 13 17 17 17 11 
4 1 123 31 22 29 27 29 18 
8 1 243 30 53 63 26 64 43 

16+ 1 251 16 89 27 42 27 74 
32 2 500 16 174 54 81 56 142 
64 4 999 16 344 111 160 110 282 

128 8 1991 16 687 215 321 215 561 

512 1 1 131 131 23 32 26 32 20 
2 1 272 136 54 64 55 63 46 
4 1 483 121 101 122 60 123 087 
8+ 1 608 76 202 78 93 79 170 
16 2 1213 76 401 152 184 152 333 
32 4 2419 76 799 303 363 301 664 

IK 1 1 525 525 105 123 102 121 87 
2 1 1061 531 232 261 120 261 199 

4t 1 1212 303 401 137 216 136 334 
8 2 2422 303 799 269 427 269 665 

2K 1 1 2079 2079 466 503 219 503 398 
2t 1 2589 1295 799 357 425 357 665 

t Full tier of input arrays. 
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ACU 
ATM 
C2 

COTS 
DARPA 
DEC 
DFT 
FFT 
HiPPI 
I/O 
ITO 
Mflop/s 
MIMD 
MIPS 
MOIE 
MPL 
MPIPL 
MPML 
MPP 
NPAC 
OS 
PE 
RISC 
RPC 
SAR 
SIMD 
THAAD 
TMD-GBR 
UFE 
VLSI 
VME 

GLOSSARY 
Array Control Unit 
Asynchronous Transfer Mode 
command and control 
commercial off-the-shelf 
Defense Advanced Research Projects Agency 
Digital Equipment Corporation 
discrete Fourier transform 
fast Fourier transform 
High Performance Parallel Interface 
input/output 
Information Technology Office 
millions of instructions per second 
multiple-instruction stream, multiple-data stream 
million of instructions per second 
Mission Oriented Investigation and Experimentation 
MasPar Parallel Application Language 
MasPar image processing library 
MasPar mathematics library 
massively parallel processor 
Northeast Parallel Architectures Center 
operating system 
processor element 
reduced instruction set computer 
Remote Procedure Call 
synthetic aperture radar 
single-instruction stream, single-data stream 
Theater High Altitude Area Defense 
Theater Missile Defense Ground Based Radar 
UNIX front-end 
very large scale integration 
virtual memory expansion 
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MISSION 
OF 

ROME LABORATORY 

Mission. The mission of Rome Laboratory is to advance the science and 
technologies of command, control, communications and intelligence and to 
transition them into systems to meet customer needs. To achieve this, 
Rome Lab: 

a. Conducts vigorous research, development and test programs in all 
applicable technologies; 

b. Transitions technology to current and future systems to improve 
operational capability, readiness, and supportability; 

c. Provides a full range of technical support to Air Force Material 
Command product centers and other Air Force organizations; 

d. Promotes transfer of technology to the private sector; 

e. Maintains leading edge technological expertise in the areas of 
surveillance, communications, command and control, intelligence, 
reliability science, electro-magnetic technology, photonics, signal 
processing, and computational science. 

The thrust areas of technical competence include: Surveillance, 
Communications, Command and Control, Intelligence, Signal Processing, 
Computer Science and Technology, Electromagnetic Technology, 
Photonics and Reliability Sciences. 


